This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 111

2000 Denmark MO - Mohr Contest, 2

Three identical spheres fit into a glass with rectangular sides and bottom and top in the form of regular hexagons such that every sphere touches every side of the glass. The glass has volume $108$ cm$^3$. What is the sidelength of the bottom? [img]https://1.bp.blogspot.com/-hBkYrORoBHk/XzcDt7B83AI/AAAAAAAAMXs/P5PGKTlNA7AvxkxMqG-qxqDVc9v9cU0VACLcBGAsYHQ/s0/2000%2BMohr%2Bp2.png[/img]

2014 Oral Moscow Geometry Olympiad, 2

Is it possible to cut a regular triangular prism into two equal pyramids?

1979 IMO, 2

We consider a prism which has the upper and inferior basis the pentagons: $A_{1}A_{2}A_{3}A_{4}A_{5}$ and $B_{1}B_{2}B_{3}B_{4}B_{5}$. Each of the sides of the two pentagons and the segments $A_{i}B_{j}$ with $i,j=1,\ldots$,5 is colored in red or blue. In every triangle which has all sides colored there exists one red side and one blue side. Prove that all the 10 sides of the two basis are colored in the same color.

1979 IMO Shortlist, 4

We consider a prism which has the upper and inferior basis the pentagons: $A_{1}A_{2}A_{3}A_{4}A_{5}$ and $B_{1}B_{2}B_{3}B_{4}B_{5}$. Each of the sides of the two pentagons and the segments $A_{i}B_{j}$ with $i,j=1,\ldots,5$ is colored in red or blue. In every triangle which has all sides colored there exists one red side and one blue side. Prove that all the 10 sides of the two basis are colored in the same color.

2012-2013 SDML (Middle School), 15

Three faces of a rectangular prism have diagonal lengths of $7$, $8$, and $9$ inches. How many cubic inches are in the volume of the rectangular prism? $\text{(A) }48\sqrt{11}\qquad\text{(B) }160\qquad\text{(C) }14\sqrt{95}\qquad\text{(D) }35\sqrt{15}\qquad\text{(E) }504$

2016 AIME Problems, 4

A right prism with height $h$ has bases that are regular hexagons with sides of length $12$. A vertex $A$ of the prism and its three adjacent vertices are the vertices of a triangular pyramid. The dihedral angle (the angle between the two planes) formed by the face of the pyramid that lies in a base of the prism and the face of the pyramid that does not contain $A$ measures $60^\circ$. Find $h^2$.

2013 IPhOO, 8

A right-triangulated prism made of benzene sits on a table. The hypotenuse makes an angle of $30^\circ$ with the horizontal table. An incoming ray of light hits the hypotenuse horizontally, and leaves the prism from the vertical leg at an acute angle of $ \gamma $ with respect to the vertical leg. Find $\gamma$, in degrees, to the nearest integer. The index of refraction of benzene is $1.50$. [i](Proposed by Ahaan Rungta)[/i]

2006 Tournament of Towns, 4

Is it possible to split a prism into disjoint set of pyramids so that each pyramid has its base on one base of the prism, while its vertex on another base of the prism ? (6)

Denmark (Mohr) - geometry, 2000.2

Three identical spheres fit into a glass with rectangular sides and bottom and top in the form of regular hexagons such that every sphere touches every side of the glass. The glass has volume $108$ cm$^3$. What is the sidelength of the bottom? [img]https://1.bp.blogspot.com/-hBkYrORoBHk/XzcDt7B83AI/AAAAAAAAMXs/P5PGKTlNA7AvxkxMqG-qxqDVc9v9cU0VACLcBGAsYHQ/s0/2000%2BMohr%2Bp2.png[/img]

2013 District Olympiad, 3

Let be the regular hexagonal prism $ABCDEFA'B C'D'E'F'$ with the base edge of $12$ and the height of $12 \sqrt{3}$. We denote by $N$ the middle of the edge $CC'$. a) Prove that the lines $BF'$ and $ND$ are perpendicular b) Calculate the distance between the lines $BF'$ and $ND$.

1995 AIME Problems, 11

A right rectangular prism $P$ (i.e., a rectangular parallelpiped) has sides of integral length $a, b, c,$ with $a\le b\le c.$ A plane parallel to one of the faces of $P$ cuts $P$ into two prisms, one of which is similar to $P,$ and both of which have nonzero volume. Given that $b=1995,$ for how many ordered triples $(a, b, c)$ does such a plane exist?

1997 Rioplatense Mathematical Olympiad, Level 3, 2

Consider a prism, not necessarily right, whose base is a rhombus $ABCD$ with side $AB = 5$ and diagonal $AC = 8$. A sphere of radius $r$ is tangent to the plane $ABCD$ at $C$ and tangent to the edges $AA_1$ , $BB _1$ and $DD_ 1$ of the prism. Calculate $r$ .

2012 National Olympiad First Round, 33

Let $ABCDA'B'C'D'$ be a rectangular prism with $|AB|=2|BC|$. $E$ is a point on the edge $[BB']$ satisfying $|EB'|=6|EB|$. Let $F$ and $F'$ be the feet of the perpendiculars from $E$ at $\triangle AEC$ and $\triangle A'EC'$, respectively. If $m(\widehat{FEF'})=60^{\circ}$, then $|BC|/|BE| = ? $ $ \textbf{(A)}\ \sqrt\frac53 \qquad \textbf{(B)}\ \sqrt\frac{15}2 \qquad \textbf{(C)}\ \frac32\sqrt{15} \qquad \textbf{(D)}\ 5\sqrt\frac53 \qquad \textbf{(E)}\ \text{None}$

1979 IMO Longlists, 12

We consider a prism which has the upper and inferior basis the pentagons: $A_{1}A_{2}A_{3}A_{4}A_{5}$ and $B_{1}B_{2}B_{3}B_{4}B_{5}$. Each of the sides of the two pentagons and the segments $A_{i}B_{j}$ with $i,j=1,\ldots,5$ is colored in red or blue. In every triangle which has all sides colored there exists one red side and one blue side. Prove that all the 10 sides of the two basis are colored in the same color.

2013-2014 SDML (High School), 8

A right rectangular prism is inscribed within a sphere. The total area of all the faces [of] the prism is $88$, and the total length of all its edges is $48$. What is the surface area of the sphere? $\text{(A) }40\pi\qquad\text{(B) }32\pi\sqrt{2}\qquad\text{(C) }48\pi\qquad\text{(D) }32\pi\sqrt{3}\qquad\text{(E) }56\pi$

2019 Romania National Olympiad, 3

In the regular hexagonal prism $ABCDEFA_1B_1C_1D_1E_1F_1$, We construct $, Q$, the projections of point $A$ on the lines $A_1B$ and $A_1C$ repsectilvely. We construct $R,S$, the projections of point $D_1$ on the lines $A_1D$ and $C_1D$ respectively. a) Determine the measure of the angle between the planes $(AQP)$ and $(D_1RS)$. b) Show that $\angle AQP = \angle D_1RS$.

1995 Tournament Of Towns, (457) 2

For what values of $n$ is it possible to paint the edges of a prism whose base is an $n$-gon so that there are edges of all three colours at each vertex and all the faces (including the upper and lower bases) have edges of all three colours? (AV Shapovelov)

2002 AMC 12/AHSME, 9

Two walls and the ceiling of a room meet at right angles at point $P$. A fly is in the air one meter from one wall, eight meters from the other wall, and $9$ meters from point $P$. How many meters is the fly from the ceiling? $\textbf{(A) }\sqrt{13}\qquad\textbf{(B) }\sqrt{14}\qquad\textbf{(C) }\sqrt{15}\qquad\textbf{(D) }4\qquad\textbf{(E) }\sqrt{17}$

2022 AMC 8 -, 24

The figure below shows a polygon $ABCDEFGH$, consisting of rectangles and right triangles. When cut out and folded on the dotted lines, the polygon forms a triangular prism. Suppose that $AH = EF = 8$ and $GH = 14$. What is the volume of the prism? [asy] // djmathman diagram unitsize(1cm); defaultpen(linewidth(0.7)+fontsize(11)); real r = 2, s = 2.5, theta = 14; pair G = (0,0), F = (r,0), C = (r,s), B = (0,s), M = (C+F)/2, I = M + s/2 * dir(-theta); pair N = (B+G)/2, J = N + s/2 * dir(180+theta); pair E = F + r * dir(- 45 - theta/2), D = I+E-F; pair H = J + r * dir(135 + theta/2), A = B+H-J; draw(A--B--C--I--D--E--F--G--J--H--cycle^^rightanglemark(F,I,C)^^rightanglemark(G,J,B)); draw(J--B--G^^C--F--I,linetype ("4 4")); dot("$A$",A,N); dot("$B$",B,1.2*N); dot("$C$",C,N); dot("$D$",D,dir(0)); dot("$E$",E,S); dot("$F$",F,1.5*S); dot("$G$",G,S); dot("$H$",H,W); dot("$I$",I,NE); dot("$J$",J,1.5*S); [/asy] $\textbf{(A)} ~112\qquad\textbf{(B)} ~128\qquad\textbf{(C)} ~192\qquad\textbf{(D)} ~240\qquad\textbf{(E)} ~288\qquad$

2010 Princeton University Math Competition, 7

A cuboctahedron is a solid with 6 square faces and 8 equilateral triangle faces, with each edge adjacent to both a square and a triangle (see picture). Suppose the ratio of the volume of an octahedron to a cuboctahedron with the same side length is $r$. Find $100r^2$. [asy] // dragon96, replacing // [img]http://i.imgur.com/08FbQs.png[/img] size(140); defaultpen(linewidth(.7)); real alpha=10, x=-0.12, y=0.025, r=1/sqrt(3); path hex=rotate(alpha)*polygon(6); pair A = shift(x,y)*(r*dir(330+alpha)), B = shift(x,y)*(r*dir(90+alpha)), C = shift(x,y)*(r*dir(210+alpha)); pair X = (-A.x, -A.y), Y = (-B.x, -B.y), Z = (-C.x, -C.y); int i; pair[] H; for(i=0; i<6; i=i+1) { H[i] = dir(alpha+60*i);} fill(X--Y--Z--cycle, rgb(204,255,255)); fill(H[5]--Y--Z--H[0]--cycle^^H[2]--H[3]--X--cycle, rgb(203,153,255)); fill(H[1]--Z--X--H[2]--cycle^^H[4]--H[5]--Y--cycle, rgb(255,203,153)); fill(H[3]--X--Y--H[4]--cycle^^H[0]--H[1]--Z--cycle, rgb(153,203,255)); draw(hex^^X--Y--Z--cycle); draw(H[1]--B--H[2]^^H[3]--C--H[4]^^H[5]--A--H[0]^^A--B--C--cycle, linewidth(0.6)+linetype("5 5")); draw(H[0]--Z--H[1]^^H[2]--X--H[3]^^H[4]--Y--H[5]);[/asy]

1966 IMO Shortlist, 3

A regular triangular prism has the altitude $h,$ and the two bases of the prism are equilateral triangles with side length $a.$ Dream-holes are made in the centers of both bases, and the three lateral faces are mirrors. Assume that a ray of light, entering the prism through the dream-hole in the upper base, then being reflected once by any of the three mirrors, quits the prism through the dream-hole in the lower base. Find the angle between the upper base and the light ray at the moment when the light ray entered the prism, and the length of the way of the light ray in the interior of the prism.

2020 AMC 10, 20

Let $B$ be a right rectangular prism (box) with edges lengths $1,$ $3,$ and $4$, together with its interior. For real $r\geq0$, let $S(r)$ be the set of points in $3$-dimensional space that lie within a distance $r$ of some point $B$. The volume of $S(r)$ can be expressed as $ar^{3} + br^{2} + cr +d$, where $a,$ $b,$ $c,$ and $d$ are positive real numbers. What is $\frac{bc}{ad}?$ $\textbf{(A) } 6 \qquad\textbf{(B) } 19 \qquad\textbf{(C) } 24 \qquad\textbf{(D) } 26 \qquad\textbf{(E) } 38$

2007 AMC 12/AHSME, 25

Points $ A$, $ B$, $ C$, $ D$, and $ E$ are located in 3-dimensional space with $ AB \equal{} BC \equal{} CD \equal{} DE \equal{} EA \equal{} 2$ and $ \angle ABC \equal{} \angle CDE \equal{} \angle DEA \equal{} 90^\circ.$ The plane of $ \triangle ABC$ is parallel to $ \overline{DE}$. What is the area of $ \triangle BDE$? $ \textbf{(A)}\ \sqrt2 \qquad \textbf{(B)}\ \sqrt3 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ \sqrt5 \qquad \textbf{(E)}\ \sqrt6$

2016 Harvard-MIT Mathematics Tournament, 3

Let $V$ be a rectangular prism with integer side lengths. The largest face has area $240$ and the smallest face has area $48$. A third face has area $x$, where $x$ is not equal to $48$ or $240$. What is the sum of all possible values of $x$?

2002 Tournament Of Towns, 5

Does there exist a regular triangular prism that can be covered (without overlapping) by different equilateral triangles? (One is allowed to bend the triangles around the edges of the prism.)