Found problems: 1679
2001 AIME Problems, 7
Triangle $ABC$ has $AB=21$, $AC=22$, and $BC=20$. Points $D$ and $E$ are located on $\overline{AB}$ and $\overline{AC}$, respectively, such that $\overline{DE}$ is parallel to $\overline{BC}$ and contains the center of the inscribed circle of triangle $ABC$. Then $DE=m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2010 Princeton University Math Competition, 4
In regular hexagon $ABCDEF$, $AC$, $CE$ are two diagonals. Points $M$, $N$ are on $AC$, $CE$ respectively and satisfy $AC: AM = CE: CN = r$. Suppose $B, M, N$ are collinear, find $100r^2$.
[asy]
size(120); defaultpen(linewidth(0.7)+fontsize(10));
pair D2(pair P) {
dot(P,linewidth(3)); return P;
}
pair A=dir(0), B=dir(60), C=dir(120), D=dir(180), E=dir(240), F=dir(300), N=(4*E+C)/5,M=intersectionpoints(A--C,B--N)[0];
draw(A--B--C--D--E--F--cycle); draw(A--C--E); draw(B--N);
label("$A$",D2(A),plain.E);
label("$B$",D2(B),NE);
label("$C$",D2(C),NW);
label("$D$",D2(D),W);
label("$E$",D2(E),SW);
label("$F$",D2(F),SE);
label("$M$",D2(M),(0,-1.5));
label("$N$",D2(N),SE);
[/asy]
1968 AMC 12/AHSME, 14
If $x$ and $y$ are non-zero numbers such that $x=1+\dfrac{1}{y}$ and $y=1+\dfrac{1}{x}$, then $y$ equals:
$\textbf{(A)}\ x-1 \qquad
\textbf{(B)}\ 1-x \qquad
\textbf{(C)}\ 1+x \qquad
\textbf{(D)}\ -x \qquad
\textbf{(E)}\ x $
2020 Ukrainian Geometry Olympiad - December, 3
On the sides $AB$ and $AC$ of a triangle $ABC$ select points $D$ and $E$ respectively, such that $AB = 6$, $AC = 9$, $AD = 4$ and $AE = 6$. It is known that the circumscribed circle of $\vartriangle ADE$ interects the side $BC$ at points $F, G$ , where $BF < BG$. Knowing that the point of intersection of lines $DF$ and $EG$ lies on the circumscribed circle of $\vartriangle ABC$ , find the ratio $BC:FG$.
2014 NIMO Problems, 14
Let $ABC$ be a triangle with circumcenter $O$ and let $X$, $Y$, $Z$ be the midpoints of arcs $BAC$, $ABC$, $ACB$ on its circumcircle. Let $G$ and $I$ denote the centroid of $\triangle XYZ$ and the incenter of $\triangle ABC$.
Given that $AB = 13$, $BC = 14$, $CA = 15$, and $\frac {GO}{GI} = \frac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$.
[i]Proposed by Evan Chen[/i]
2009 CHKMO, 3
$ \Delta ABC$ is a triangle such that $ AB \neq AC$. The incircle of $ \Delta ABC$ touches $ BC, CA, AB$ at $ D, E, F$ respectively. $ H$ is a point on the segment $ EF$ such that $ DH \bot EF$. Suppose $ AH \bot BC$, prove that $ H$ is the orthocentre of $ \Delta ABC$.
Remark: the original question has missed the condition $ AB \neq AC$
1971 AMC 12/AHSME, 16
After finding the average of $35$ scores, a student carelessly included the average with the $35$ scores and found the average of these $36$ numbers. The ratio of the second average to the true average was
$\textbf{(A) }1:1\qquad\textbf{(B) }35:36\qquad\textbf{(C) }36:35\qquad\textbf{(D) }2:1\qquad \textbf{(E) }\text{None of these}$
2002 USA Team Selection Test, 5
Consider the family of nonisosceles triangles $ABC$ satisfying the property $AC^2 + BC^2 = 2 AB^2$. Points $M$ and $D$ lie on side $AB$ such that $AM = BM$ and $\angle ACD = \angle BCD$. Point $E$ is in the plane such that $D$ is the incenter of triangle $CEM$. Prove that exactly one of the ratios
\[ \frac{CE}{EM}, \quad \frac{EM}{MC}, \quad \frac{MC}{CE} \]
is constant.
1988 AMC 12/AHSME, 8
If $\frac{b}{a} = 2$ and $\frac{c}{b} = 3$, what is the ratio of $a + b$ to $b + c$?
$ \textbf{(A)}\ \frac{1}{3}\qquad\textbf{(B)}\ \frac{3}{8}\qquad\textbf{(C)}\ \frac{3}{5}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{3}{4} $
1983 AIME Problems, 15
The adjoining figure shows two intersecting chords in a circle, with $B$ on minor arc $AD$. Suppose that the radius of the circle is 5, that $BC = 6$, and that $AD$ is bisected by $BC$. Suppose further that $AD$ is the only chord starting at $A$ which is bisected by $BC$. It follows that the sine of the minor arc $AB$ is a rational number. If this fraction is expressed as a fraction $m/n$ in lowest terms, what is the product $mn$?
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
pair A=dir(200), D=dir(95), M=midpoint(A--D), C=dir(30), BB=C+2*dir(C--M), B=intersectionpoint(M--BB, Circle(origin, 1));
draw(Circle(origin, 1)^^A--D^^B--C);
real r=0.05;
pair M1=midpoint(M--D), M2=midpoint(M--A);
draw((M1+0.1*dir(90)*dir(A--D))--(M1+0.1*dir(-90)*dir(A--D)));
draw((M2+0.1*dir(90)*dir(A--D))--(M2+0.1*dir(-90)*dir(A--D)));
pair point=origin;
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));[/asy]
1985 AMC 8, 16
The ratio of boys to girls in Mr. Brown's math class is $ 2: 3$. If there are $ 30$ students in the class, how many more girls than boys are in the class?
\[ \textbf{(A)}\ 1 \qquad
\textbf{(B)}\ 3 \qquad
\textbf{(C)}\ 5 \qquad
\textbf{(D)}\ 6 \qquad
\textbf{(E)}\ 10
\]
1995 Poland - First Round, 6
Given two sequences of positive integers: the arithmetic sequence with difference $r > 0$ and the geometric sequence with ratio $q > 1$; $r$ and $q$ are coprime. Prove that if these sequences have one term in common, then they have them infinitely many.
2007 Iran MO (3rd Round), 5
Let $ ABC$ be a triangle. Squares $ AB_{c}B_{a}C$, $ CA_{b}A_{c}B$ and $ BC_{a}C_{b}A$ are outside the triangle. Square $ B_{c}B_{c}'B_{a}'B_{a}$ with center $ P$ is outside square $ AB_{c}B_{a}C$. Prove that $ BP,C_{a}B_{a}$ and $ A_{c}B_{c}$ are concurrent.
2023 Chile Junior Math Olympiad, 4
Let $\vartriangle ABC$ be an equilateral triangle with side $1$. The points $P$, $Q$, $R$ are chosen on the sides of the segments $AB$, $BC$, $AC$ respectively in such a way that
$$\frac{AP}{PB}=\frac{BQ}{QC}=\frac{CR}{RA}=\frac25.$$
Find the area of triangle $PQR$.
[img]https://cdn.artofproblemsolving.com/attachments/8/4/6184d66bd3ae23db29a93eeef241c46ae0ad44.png[/img]
1996 Brazil National Olympiad, 4
$ABC$ is acute-angled. $D$ s a variable point on the side BC. $O_1$ is the circumcenter of $ABD$, $O_2$ is the circumcenter of $ACD$, and $O$ is the circumcenter of $AO_1O_2$. Find the locus of $O$.
2005 AIME Problems, 10
Given that $O$ is a regular octahedron, that $C$ is the cube whose vertices are the centers of the faces of $O$, and that the ratio of the volume of $O$ to that of $C$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime integers, find $m+n$.
1955 AMC 12/AHSME, 15
The ratio of the areas of two concentric circles is $ 1: 3$. If the radius of the smaller is $ r$, then the difference between the radii is best approximated by:
$ \textbf{(A)}\ 0.41r \qquad
\textbf{(B)}\ 0.73 \qquad
\textbf{(C)}\ 0.75 \qquad
\textbf{(D)}\ 0.73r \qquad
\textbf{(E)}\ 0.75r$
2010 Postal Coaching, 1
Let $A, B, C, D$ be four distinct points in the plane such that the length of the six line segments $AB, AC, AD, BC, BD, CD$ form a $2$-element set ${a, b}$. If $a > b$, determine all the possible values of $\frac ab$.
1981 AMC 12/AHSME, 9
In the adjoining figure, $PQ$ is a diagonal of the cube. If $PQ$ has length $a$, then the surface area of the cube is
$\text{(A)}\ 2a^2 \qquad \text{(B)}\ 2\sqrt{2}a^2 \qquad \text{(C)}\ 2\sqrt{3}a^2 \qquad \text{(D)}\ 3\sqrt{3}a^2 \qquad \text{(E)}\ 6a^2$
2001 District Olympiad, 4
Consider a convex qudrilateral $ABCD$ and $M\in (AB),\ N\in (CD)$ such that $\frac{AM}{BM}=\frac{DN}{CN}=k$. Prove that $BC\parallel AD$ if and only if
\[MN=\frac{1}{k+1} AD+\frac{k}{k+1} BC\]
[i]***[/i]
2008 Czech and Slovak Olympiad III A, 2
At one moment, a kid noticed that the end of the hour hand, the end of the minute hand and one of the twelve numbers (regarded as a point) of his watch formed an equilateral triangle. He also calculated that $t$ hours would elapse for the next similar case. Suppose that the ratio of the lengths of the minute hand (whose length is equal to the distance from the center of the watch plate to any of the twelve numbers) and the hour hand is $k>1$. Find the maximal value of $t$.
1980 AMC 12/AHSME, 10
The number of teeth in three meshed gears $A$, $B$, and $C$ are $x$, $y$, and $z$, respectively. (The teeth on all gears are the same size and regularly spaced.) The angular speeds, in revolutions per minutes of $A$, $B$, and $C$ are in the proportion
$\text{(A)} \ x: y: z ~~\text{(B)} \ z: y: x ~~ \text{(C)} \ y: z: x~~ \text{(D)} \ yz: xz: xy ~~ \text{(E)} \ xz: yx: zy$
2016 AMC 10, 5
A rectangular box has integer side lengths in the ratio $1: 3: 4$. Which of the following could be the volume of the box?
$\textbf{(A)}\ 48\qquad\textbf{(B)}\ 56\qquad\textbf{(C)}\ 64\qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 144$
2014 South East Mathematical Olympiad, 2
Let $n\geq 4$ be a positive integer.Out of $n$ people,each of two individuals play table tennis game(every game has a winner).Find the minimum value of $n$,such that for any possible outcome of the game,there always exist an ordered four people group $(a_{1},a_{2},a_{3},a_{4})$,such that the person $a_{i}$ wins against $a_{j}$ for any $1\leq i<j\leq 4$
Maryland University HSMC part II, 2023.4
Assume every side length of a triangle $ABC$ is more than $2$ and two of its angles are given by $\angle ABC = 57^\circ$ and $ACB = 63^\circ$. Point $P$ is chosen on side $BC$ with $BP:PC = 2:1$. Points $M,N$ are chosen on sides $AB$ and $AC$, respectively so that $BM = 2$ and $CN = 1$. Let $Q$ be the point on segment $MN$ for which $MQ:QN = 2:1$. Find the value of $PQ$. Your answer must be in simplest form.