This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2010 Flanders Math Olympiad, 2

A parallelogram with an angle of $60^o$ has $a$ as the longest side and a shortest side $b$. Let's take the perpendiculars down from the vertices of the obtuse angles to the longest diagonal, then it is divided into three equal parts. Determine the ratio $\frac{a}{b}$.

1990 Kurschak Competition, 2

The incenter of $\triangle A_1A_2A_3$ is $I$, and the center of the $A_i$-excircle is $J_i$ ($i=1,2,3$). Let $B_i$ be the intersection point of side $A_{i+1}A_{i+2}$ and the bisector of $\angle A_{i+1}IA_{i+2}$ ($A_{i+3}:=A_i$ $\forall i$). Prove that the three lines $B_iJ_i$ are concurrent.

2006 AMC 8, 15

Tags: ratio
Problems 14, 15 and 16 involve Mrs. Reed's English assignment. A Novel Assignment The students in Mrs. Reed's English class are reading the same 760-page novel. Three friends, Alice, Bob and Chandra, are in the class. Alice reads a page in 20 seconds, Bob reads a page in 45 seconds and Chandra reads a page in 30 seconds. Chandra and Bob, who each have a copy of the book, decide that they can save time by "team reading" the novel. In this scheme, Chandra will read from page 1 to a certain page and Bob will read from the next page through page 760, finishing the book. When they are through they will tell each other about the part they read. What is the last page that Chandra should read so that she and Bob spend the same amount of time reading the novel? $ \textbf{(A)}\ 425 \qquad \textbf{(B)}\ 444 \qquad \textbf{(C)}\ 456 \qquad \textbf{(D)}\ 484 \qquad \textbf{(E)}\ 506$

1958 AMC 12/AHSME, 50

Tags: ratio
In this diagram a scheme is indicated for associating all the points of segment $ \overline{AB}$ with those of segment $ \overline{A'B'}$, and reciprocally. To described this association scheme analytically, let $ x$ be the distance from a point $ P$ on $ \overline{AB}$ to $ D$ and let $ y$ be the distance from the associated point $ P'$ of $ \overline{A'B'}$ to $ D'$. Then for any pair of associated points, if $ x \equal{} a,\, x \plus{} y$ equals: [asy]defaultpen(linewidth(.8pt)); unitsize(.8cm); pair D= (0,9); pair E = origin; pair A = (3,9); pair P = (3.6,9); pair B = (4,9); pair F = (1,0); pair G = (2.6,0); pair H = (5,0); dot((0,0));dot((1,0));dot((2,0));dot((3,0));dot((4,0));dot((5,0)); dot((0,9));dot((1,9));dot((2,9));dot((3,9));dot((4,9));dot((5,9)); draw((D+(0,0.5))--(0,-0.5)); draw(A--H); draw(P--G); draw(B--F); draw(F--H); draw(A--B); label("$D$",D,NW); label("$D'$",E,NW); label("0",(0,0),SE); label("1",(1,0),SE); label("2",(2,0),SE); label("3",(3,0),SE); label("4",(4,0),SE); label("5",(5,0),SE); label("0",(0,9),SE); label("1",(1,9),SE); label("2",(2,9),SE); label("3",(3,9),SW); label("4",(4,9),SE); label("5",(5,9),SE); label("$B'$",F,NW); label("$P'$",G,S); label("$A'$",H,NE); label("$A$",A,NW); label("$P$",P,N); label("$B$",B,NE);[/asy] $ \textbf{(A)}\ 13a\qquad \textbf{(B)}\ 17a \minus{} 51\qquad \textbf{(C)}\ 17 \minus{} 3a\qquad \textbf{(D)}\ \frac {17 \minus{} 3a}{4}\qquad \textbf{(E)}\ 12a \minus{} 34$

1996 National High School Mathematics League, 2

Tags: ratio
For geometrical sequence $(a_n)$, the first term $a_1=1536$, common ratio $q=-\frac{1}{2}$. Let $\pi_n=\prod_{i=1}^n a_i$, so the lagerest one in $(\pi_n)$ is $\text{(A)} \pi_9\qquad\text{(B)} \pi_{11}\qquad\text{(C)} \pi_{12}\qquad\text{(D)} \pi_{13}$

2003 AMC 12-AHSME, 13

An ice cream cone consists of a sphere of vanilla ice cream and a right circular cone that has the same diameter as the sphere. If the ice cream melts, it will exactly fill the cone. Assume that the melted ice cream occupies $ 75\%$ of the volume of the frozen ice cream. What is the ratio of the cone’s height to its radius? $ \textbf{(A)}\ 2: 1 \qquad \textbf{(B)}\ 3: 1 \qquad \textbf{(C)}\ 4: 1 \qquad \textbf{(D)}\ 16: 3 \qquad \textbf{(E)}\ 6: 1$

2022 Chile Junior Math Olympiad, 2

In a trapezoid $ABCD$ whose parallel sides $AB$ and $CD$ are in ratio $\frac{AB}{CD}=\frac32$, the points $ N$ and $M$ are marked on the sides $BC$ and $AB$ respectively, in such a way that $BN = 3NC$ and $AM = 2MB$ and segments $AN$ and $DM$ are drawn that intersect at point $P$, find the ratio between the areas of triangle $APM$ and trapezoid $ABCD$. [img]https://cdn.artofproblemsolving.com/attachments/7/8/21d59ca995d638dfcb76f9508e439fd93a5468.png[/img]

Estonia Open Junior - geometry, 2007.1.4

Call a scalene triangle K [i]disguisable[/i] if there exists a triangle K′ similar to K with two shorter sides precisely as long as the two longer sides of K, respectively. Call a disguisable triangle [i]integral[/i] if the lengths of all its sides are integers. (a) Find the side lengths of the integral disguisable triangle with the smallest possible perimeter. (b) Let K be an arbitrary integral disguisable triangle for which no smaller integral disguisable triangle similar to it exists. Prove that at least two side lengths of K are perfect squares.

2009 IberoAmerican Olympiad For University Students, 1

A line through a vertex of a non-degenerate triangle cuts it in two similar triangles with $\sqrt{3}$ as the ratio between correspondent sides. Find the angles of the given triangle.

2014 USAMTS Problems, 2:

Let $A_1A_2A_3A_4A_5$ be a regular pentagon with side length 1. The sides of the pentagon are extended to form the 10-sided polygon shown in bold at right. Find the ratio of the area of quadrilateral $A_2A_5B_2B_5$ (shaded in the picture to the right) to the area of the entire 10-sided polygon. [asy] size(8cm); defaultpen(fontsize(10pt)); pair A_2=(-0.4382971011,5.15554989475), B_4=(-2.1182971011,-0.0149584477027), B_5=(-4.8365942022,8.3510997895), A_3=(0.6,8.3510997895), B_1=(2.28,13.521608132), A_4=(3.96,8.3510997895), B_2=(9.3965942022,8.3510997895), A_5=(4.9982971011,5.15554989475), B_3=(6.6782971011,-0.0149584477027), A_1=(2.28,3.18059144705); filldraw(A_2--A_5--B_2--B_5--cycle,rgb(.8,.8,.8)); draw(B_1--A_4^^A_4--B_2^^B_2--A_5^^A_5--B_3^^B_3--A_1^^A_1--B_4^^B_4--A_2^^A_2--B_5^^B_5--A_3^^A_3--B_1,linewidth(1.2)); draw(A_1--A_2--A_3--A_4--A_5--cycle); pair O = (A_1+A_2+A_3+A_4+A_5)/5; label("$A_1$",A_1, 2dir(A_1-O)); label("$A_2$",A_2, 2dir(A_2-O)); label("$A_3$",A_3, 2dir(A_3-O)); label("$A_4$",A_4, 2dir(A_4-O)); label("$A_5$",A_5, 2dir(A_5-O)); label("$B_1$",B_1, 2dir(B_1-O)); label("$B_2$",B_2, 2dir(B_2-O)); label("$B_3$",B_3, 2dir(B_3-O)); label("$B_4$",B_4, 2dir(B_4-O)); label("$B_5$",B_5, 2dir(B_5-O)); [/asy]

2010 Tournament Of Towns, 2

Tags: geometry , ratio
Let $M$ be the midpoint of side $AC$ of the triangle $ABC$. Let $P$ be a point on the side $BC$. If $O$ is the point of intersection of $AP$ and $BM$ and $BO = BP$, determine the ratio $\frac{OM}{PC}$ .

2010 AMC 10, 24

A high school basketball game between the Raiders and Wildcats was tied at the end of the first quarter. The number of points scored by the Raiders in each of the four quarters formed an increasing geometric sequence, and the number of points scored by the Wildcats in each of the four quarters formed an increasing arithmetic sequence. At the end of the fourth quarter, the Raiders had won by one point. Neither team scored more than $ 100$ points. What was the total number of points scored by the two teams in the first half? $ \textbf{(A)}\ 30 \qquad \textbf{(B)}\ 31 \qquad \textbf{(C)}\ 32 \qquad \textbf{(D)}\ 33 \qquad \textbf{(E)}\ 34$

Estonia Open Junior - geometry, 2000.1.3

Tags: ratio , square , area
Consider a shape obtained from two equal squares with the same center. Prove that the ratio of the area of this shape to the perimeter does not change when the squares are rotated around their center. [img]http://4.bp.blogspot.com/-1AI4FxsNSr4/XovZWkvAwiI/AAAAAAAALvY/-kIzOgXB5rk3iIqGbpoKRCW9rwJPcZ3uQCK4BGAYYCw/s400/estonia%2B2000%2Bo.j.1.3.png[/img]

1962 AMC 12/AHSME, 39

Two medians of a triangle with unequal sides are $ 3$ inches and $ 6$ inches. Its area is $ 3 \sqrt{15}$ square inches. The length of the third median in inches, is: $ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 3 \sqrt{3} \qquad \textbf{(C)}\ 3 \sqrt{6} \qquad \textbf{(D)}\ 6 \sqrt{3} \qquad \textbf{(E)}\ 6 \sqrt{6}$

1968 Bulgaria National Olympiad, Problem 5

The point $M$ is inside the tetrahedron $ABCD$ and the intersection points of the lines $AM,BM,CM$ and $DM$ with the opposite walls are denoted with $A_1,B_1,C_1,D_1$ respectively. It is given also that the ratios $\frac{MA}{MA_1}$, $\frac{MB}{MB_1}$, $\frac{MC}{MC_1}$, and $\frac{MD}{MD_1}$ are equal to the same number $k$. Find all possible values of $k$. [i]K. Petrov[/i]

2014 ELMO Shortlist, 13

Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$. [i]Proposed by David Stoner[/i]

2004 India IMO Training Camp, 1

Tags: ratio , function , geometry
Let $ABC$ be a triangle and $I$ its incentre. Let $\varrho_1$ and $\varrho_2$ be the inradii of triangles $IAB$ and $IAC$ respectively. (a) Show that there exists a function $f: ( 0, \pi ) \mapsto \mathbb{R}$ such that \[ \frac{ \varrho_1}{ \varrho_2} = \frac{f(C)}{f(B)} \] where $B = \angle ABC$ and $C = \angle BCA$ (b) Prove that \[ 2 ( \sqrt{2} -1 ) < \frac{ \varrho_1} { \varrho_2} < \frac{ 1 + \sqrt{2}}{2} \]

2006 AMC 12/AHSME, 21

Let \[ S_1 \equal{} \{ (x,y)\ | \ \log_{10} (1 \plus{} x^2 \plus{} y^2)\le 1 \plus{} \log_{10}(x \plus{} y)\} \]and \[ S_2 \equal{} \{ (x,y)\ | \ \log_{10} (2 \plus{} x^2 \plus{} y^2)\le 2 \plus{} \log_{10}(x \plus{} y)\}. \]What is the ratio of the area of $ S_2$ to the area of $ S_1$? $ \textbf{(A) } 98\qquad \textbf{(B) } 99\qquad \textbf{(C) } 100\qquad \textbf{(D) } 101\qquad \textbf{(E) } 102$

1988 AIME Problems, 11

Let $w_1, w_2, \dots, w_n$ be complex numbers. A line $L$ in the complex plane is called a mean line for the points $w_1, w_2, \dots, w_n$ if $L$ contains points (complex numbers) $z_1, z_2, \dots, z_n$ such that \[ \sum_{k = 1}^n (z_k - w_k) = 0. \] For the numbers $w_1 = 32 + 170i$, $w_2 = -7 + 64i$, $w_3 = -9 +200i$, $w_4 = 1 + 27i$, and $w_5 = -14 + 43i$, there is a unique mean line with $y$-intercept 3. Find the slope of this mean line.

2002 South africa National Olympiad, 2

Find all triples of natural numbers $(a,b,c)$ such that $a$, $b$ and $c$ are in geometric progression and $a + b + c = 111$.

2002 AIME Problems, 2

The diagram shows twenty congruent circles arranged in three rows and enclosed in a rectangle. The circles are tangent to one another and to the sides of the rectangle as shown in the diagram. The ratio of the longer dimension of the rectangle to the shorter dimension can be written as $\frac{1}{2}\left(\sqrt{p}-q\right),$ where $p$ and $q$ are positive integers. Find $p+q.$ [asy] size(250);real x=sqrt(3); int i; draw(origin--(14,0)--(14,2+2x)--(0,2+2x)--cycle); for(i=0; i<7; i=i+1) { draw(Circle((2*i+1,1), 1)^^Circle((2*i+1,1+2x), 1)); } for(i=0; i<6; i=i+1) { draw(Circle((2*i+2,1+x), 1)); }[/asy]

2003 District Olympiad, 2

Let be two distinct continuous functions $ f,g:[0,1]\longrightarrow (0,\infty ) $ corelated by the equality $ \int_0^1 f(x)dx =\int_0^1 g(x)dx , $ and define the sequence $ \left( x_n \right)_{n\ge 0} $ as $$ x_n=\int_0^1 \frac{\left( f(x) \right)^{n+1}}{\left( g(x) \right)^n} dx . $$ [b]a)[/b] Show that $ \infty =\lim_{n\to\infty} x_n. $ [b]b)[/b] Demonstrate that the sequence $ \left( x_n \right)_{n\ge 0} $ is monotone.

2017 Germany, Landesrunde - Grade 11/12, 2

Three circles $k_1,k_2$ and $k_3$ go through the points $A$ and $B$. A secant through $A$ intersects the circles $k_1,k_2$ and $k_3$ again in the points $C,D$ resp. $E$. Prove that the ratio $|CD|:|DE|$ does not depend on the choice of the secant.

2015 AMC 12/AHSME, 20

For every positive integer $n$, let $\operatorname{mod_5}(n)$ be the remainder obtained when $n$ is divided by $5$. Define a function $f : \{0, 1, 2, 3, \dots\} \times \{0, 1, 2, 3, 4\} \to \{0, 1, 2, 3, 4\}$ recursively as follows: \[f(i, j) = \begin{cases} \operatorname{mod_5}(j+1) & \text{if }i=0\text{ and }0\leq j\leq 4 \\ f(i-1, 1) & \text{if }i\geq 1\text{ and }j=0 \text{, and}\\ f(i-1, f(i, j-1)) & \text{if }i\geq 1\text{ and }1\leq j\leq 4 \end{cases}\] What is $f(2015, 2)$? $\textbf{(A) }0 \qquad\textbf{(B) }1 \qquad\textbf{(C) }2 \qquad\textbf{(D) }3 \qquad\textbf{(E) }4$

2005 Bulgaria National Olympiad, 2

Consider two circles $k_{1},k_{2}$ touching externally at point $T$. a line touches $k_{2}$ at point $X$ and intersects $k_{1}$ at points $A$ and $B$. Let $S$ be the second intersection point of $k_{1}$ with the line $XT$ . On the arc $\widehat{TS}$ not containing $A$ and $B$ is chosen a point $C$ . Let $\ CY$ be the tangent line to $k_{2}$ with $Y\in k_{2}$ , such that the segment $CY$ does not intersect the segment $ST$ . If $I=XY\cap SC$ . Prove that : (a) the points $C,T,Y,I$ are concyclic. (b) $I$ is the excenter of triangle $ABC$ with respect to the side $BC$.