This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2011 BAMO, 4

Tags: geometry , circles , ratio
Three circles $k_1, k_2$, and $k_3$ intersect in point $O$. Let $A, B$, and $C$ be the second intersection points (other than $O$) of $k_2$ and $k_3, k_1$ and $k_3$, and $k_1$ and $k_2$, respectively. Assume that $O$ lies inside of the triangle $ABC$. Let lines $AO,BO$, and $CO$ intersect circles $k_1, k_2$, and $k_3$ for a second time at points $A', B'$, and $C'$, respectively. If $|XY|$ denotes the length of segment $XY$, prove that $\frac{|AO|}{|AA'|}+\frac{|BO|}{|BB'|}+\frac{|CO|}{|CC'|}= 1$

2008 Germany Team Selection Test, 1

Tags: ratio , geometry
Let $ ABC$ be an acute triangle, and $ M_a$, $ M_b$, $ M_c$ be the midpoints of the sides $ a$, $ b$, $ c$. The perpendicular bisectors of $ a$, $ b$, $ c$ (passing through $ M_a$, $ M_b$, $ M_c$) intersect the boundary of the triangle again in points $ T_a$, $ T_b$, $ T_c$. Show that if the set of points $ \left\{A,B,C\right\}$ can be mapped to the set $ \left\{T_a, T_b, T_c\right\}$ via a similitude transformation, then two feet of the altitudes of triangle $ ABC$ divide the respective triangle sides in the same ratio. (Here, "ratio" means the length of the shorter (or equal) part divided by the length of the longer (or equal) part.) Does the converse statement hold?

1954 AMC 12/AHSME, 27

A right circular cone has for its base a circle having the same radius as a given sphere. The volume of the cone is one-half that of the sphere. The ratio of the altitude of the cone to the radius of its base is: $ \textbf{(A)}\ \frac{1}{1} \qquad \textbf{(B)}\ \frac{1}{2} \qquad \textbf{(C)}\ \frac{2}{3} \qquad \textbf{(D)}\ \frac{2}{1} \qquad \textbf{(E)}\ \sqrt{\frac{5}{4}}$

2007 Princeton University Math Competition, 4

Find $\frac{area(CDF)}{area(CEF)}$ in the figure. [asy] /* File unicodetex not found. */ /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(5.75cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -2, xmax = 21, ymin = -2, ymax = 16; /* image dimensions */ /* draw figures */ draw((0,0)--(20,0)); draw((13.48,14.62)--(7,0)); draw((0,0)--(15.93,9.12)); draw((13.48,14.62)--(20,0)); draw((13.48,14.62)--(0,0)); label("6",(15.16,12.72),SE*labelscalefactor); label("10",(18.56,5.1),SE*labelscalefactor); label("7",(3.26,-0.6),SE*labelscalefactor); label("13",(13.18,-0.71),SE*labelscalefactor); label("20",(5.07,8.33),SE*labelscalefactor); /* dots and labels */ dot((0,0),dotstyle); label("$B$", (-1.23,-1.48), NE * labelscalefactor); dot((20,0),dotstyle); label("$C$", (19.71,-1.59), NE * labelscalefactor); dot((7,0),dotstyle); label("$D$", (6.77,-1.64), NE * labelscalefactor); dot((13.48,14.62),dotstyle); label("$A$", (12.36,14.91), NE * labelscalefactor); dot((15.93,9.12),dotstyle); label("$E$", (16.42,9.21), NE * labelscalefactor); dot((9.38,5.37),dotstyle); label("$F$", (9.68,4.5), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy]

2007 Bulgaria Team Selection Test, 3

Let $I$ be the center of the incircle of non-isosceles triangle $ABC,A_{1}=AI\cap BC$ and $B_{1}=BI\cap AC.$ Let $l_{a}$ be the line through $A_{1}$ which is parallel to $AC$ and $l_{b}$ be the line through $B_{1}$ parallel to $BC.$ Let $l_{a}\cap CI=A_{2}$ and $l_{b}\cap CI=B_{2}.$ Also $N=AA_{2}\cap BB_{2}$ and $M$ is the midpoint of $AB.$ If $CN\parallel IM$ find $\frac{CN}{IM}$.

Ukraine Correspondence MO - geometry, 2004.8

The extensions of the sides $AB$ and $CD$ of the trapezoid $ABCD$ intersect at point $E$. Denote by $H$ and $G$ the midpoints of $BD$ and $AC$. Find the ratio of the area $AEGH$ to the area $ABCD$.

2008 AMC 12/AHSME, 25

Let $ ABCD$ be a trapezoid with $ AB\parallel{}CD$, $ AB\equal{}11$, $ BC\equal{}5$, $ CD\equal{}19$, and $ DA\equal{}7$. Bisectors of $ \angle A$ and $ \angle D$ meet at $ P$, and bisectors of $ \angle B$ and $ \angle C$ meet at $ Q$. What is the area of hexagon $ ABQCDP$? $ \textbf{(A)}\ 28\sqrt{3}\qquad \textbf{(B)}\ 30\sqrt{3}\qquad \textbf{(C)}\ 32\sqrt{3}\qquad \textbf{(D)}\ 35\sqrt{3}\qquad \textbf{(E)}\ 36\sqrt{3}$

2024 Myanmar IMO Training, 2

Let $a, b, c$ be positive real numbers satisfying \[a+b+c = a^2 + b^2 + c^2.\] Let \[M = \max\left(\frac{2a^2}{b} + c, \frac{2b^2}{a} + c \right) \quad \text{ and } \quad N = \min(a^2 + b^2, c^2).\] Find the minimum possible value of $M/N$.

2005 AIME Problems, 15

Let $w_{1}$ and $w_{2}$ denote the circles $x^{2}+y^{2}+10x-24y-87=0$ and $x^{2}+y^{2}-10x-24y+153=0$, respectively. Let $m$ be the smallest positive value of $a$ for which the line $y=ax$ contains the center of a circle that is externally tangent to $w_{2}$ and internally tangent to $w_{1}$. Given that $m^{2}=p/q$, where $p$ and $q$ are relatively prime integers, find $p+q$.

2008 Harvard-MIT Mathematics Tournament, 26

Let $ \mathcal P$ be a parabola, and let $ V_1$ and $ F_1$ be its vertex and focus, respectively. Let $ A$ and $ B$ be points on $ \mathcal P$ so that $ \angle AV_1 B \equal{} 90^\circ$. Let $ \mathcal Q$ be the locus of the midpoint of $ AB$. It turns out that $ \mathcal Q$ is also a parabola, and let $ V_2$ and $ F_2$ denote its vertex and focus, respectively. Determine the ratio $ F_1F_2/V_1V_2$.

PEN H Problems, 77

Find all pairwise relatively prime positive integers $l, m, n$ such that \[(l+m+n)\left( \frac{1}{l}+\frac{1}{m}+\frac{1}{n}\right)\] is an integer.

2002 AMC 10, 10

Tags: ratio
Let $a$ and $b$ be distinct real numbers for which \[\dfrac ab+\dfrac{a+10b}{b+10a}=2.\] Find $\dfrac ab$. $\textbf{(A) }0.6\qquad\textbf{(B) }0.7\qquad\textbf{(C) }0.8\qquad\textbf{(D) }0.9\qquad\textbf{(E) }1$

2002 AIME Problems, 11

Two distinct, real, infinite geometric series each have a sum of $1$ and have the same second term. The third term of one of the series is $1/8,$ and the second term of both series can be written in the form $\frac{\sqrt{m}-n}{p},$ where $m,$ $n,$ and $p$ are positive integers and $m$ is not divisible by the square of any prime. Find $100m+10n+p.$

Indonesia MO Shortlist - geometry, g2.3

Tags: geometry , ratio
For every triangle $ ABC$, let $ D,E,F$ be a point located on segment $ BC,CA,AB$, respectively. Let $ P$ be the intersection of $ AD$ and $ EF$. Prove that: \[ \frac{AB}{AF}\times DC\plus{}\frac{AC}{AE}\times DB\equal{}\frac{AD}{AP}\times BC\]

2007 All-Russian Olympiad, 3

Tags: rhombus , geometry , ratio
Given a rhombus $ABCD$. A point $M$ is chosen on its side $BC$. The lines, which pass through $M$ and are perpendicular to $BD$ and $AC$, meet line $AD$ in points $P$ and $Q$ respectively. Suppose that the lines $PB,QC,AM$ have a common point. Find all possible values of a ratio $\frac{BM}{MC}$. [i]S. Berlov, F. Petrov, A. Akopyan[/i]

2006 Purple Comet Problems, 5

Tags: ratio
The sizes of the freshmen class and the sophomore class are in the ratio $5:4$. The sizes of the sophomore class and the junior class are in the ratio $7:8$. The sizes of the junior class and the senior class are in the ratio $9:7$. If these four classes together have a total of $2158$ students, how many of the students are freshmen?

2012 Bogdan Stan, 4

Let $ D $ be a point on the side $ BC $ (excluding its endpoints) of a triangle $ ABC $ with $ AB>AC, $ such that $ \frac{\angle BAD}{\angle BAC} $ is a rational number. Prove the following: $$ \frac{\angle BAD}{\angle BAC} < \frac{AB\cdot AC - AC\cdot AD}{AB\cdot AD - AC\cdot AD} $$

VII Soros Olympiad 2000 - 01, 9.6

Two vertices of the rectangle are located on side $BC$ of triangle $ABC$, and the other two are on sides $AB$ and $AC$. It is known that the midpoint of the altitude of this triangle, drawn on the side $BC$, lies on one of the diagonals of the rectangle, and the side of the rectangle located on $BC$ is three times less than $BC$. In what ratio does the altitude of the triangle divide the side $BC$ ?

2002 National Olympiad First Round, 13

Let $ABCD$ be a trapezoid such that $AB \parallel CD$, $|BC|+|AD| = 7$, $|AB| = 9$ and $|BC| = 14$. What is the ratio of the area of the triangle formed by $CD$, angle bisector of $\widehat{BCD}$ and angle bisector of $\widehat{CDA}$ over the area of the trapezoid? $ \textbf{a)}\ \dfrac{9}{14} \qquad\textbf{b)}\ \dfrac{5}{7} \qquad\textbf{c)}\ \sqrt 2 \qquad\textbf{d)}\ \dfrac{49}{69} \qquad\textbf{e)}\ \dfrac 13 $

2010 China Girls Math Olympiad, 1

Tags: algebra , ratio
Let $n$ be an integer greater than two, and let $A_1,A_2, \cdots , A_{2n}$ be pairwise distinct subsets of $\{1, 2, ,n\}$. Determine the maximum value of \[\sum_{i=1}^{2n} \dfrac{|A_i \cap A_{i+1}|}{|A_i| \cdot |A_{i+1}|}\] Where $A_{2n+1}=A_1$ and $|X|$ denote the number of elements in $X.$

2015 AMC 10, 6

Tags: ratio
The sum of two positive numbers is $5$ times their difference. What is the ratio of the larger number to the smaller? $\textbf{(A) }\dfrac54\qquad\textbf{(B) }\dfrac32\qquad\textbf{(C) }\dfrac95\qquad\textbf{(D) }2\qquad\textbf{(E) }\dfrac52$

2006 AMC 10, 22

Two farmers agree that pigs are worth $ \$300$ and that goats are worth $ \$210$. When one farmer owes the other money, he pays the debt in pigs or goats, with ``change'' received in the form of goats or pigs as necessary. (For example, a $ \$390$ debt could be paid with two pigs, with one goat received in change.) What is the amount of the smallest positive debt that can be resolved in this way? $ \textbf{(A) } \$5\qquad \textbf{(B) } \$10\qquad \textbf{(C) } \$30\qquad \textbf{(D) } \$90\qquad \textbf{(E) } \$210$

Ukraine Correspondence MO - geometry, 2003.11

Tags: hexagon , geometry , ratio
Let $ABCDEF$ be a convex hexagon, $P, Q, R$ be the intersection points of $AB$ and $EF$, $EF$ and $CD$, $CD$ and $AB$. $S, T,UV$ are the intersection points of $BC$ and $DE$, $DE$ and $FA$, $FA$ and $BC$, respectively. Prove that if $$\frac{AB}{PR}=\frac{CD}{RQ}=\frac{EF}{QP},$$ then $$\frac{BC}{US}=\frac{DE}{ST}=\frac{FA}{TU}.$$

1978 USAMO, 2

$ABCD$ and $A'B'C'D'$ are square maps of the same region, drawn to different scales and superimposed as shown in the figure. Prove that there is only one point $O$ on the small map that lies directly over point $O'$ of the large map such that $O$ and $O'$ each represent the same place of the country. Also, give a Euclidean construction (straight edge and compass) for $O$. [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); real theta = -100, r = 0.3; pair D2 = (0.3,0.76); string[] lbl = {'A', 'B', 'C', 'D'}; draw(unitsquare); draw(shift(D2)*rotate(theta)*scale(r)*unitsquare); for(int i = 0; i < lbl.length; ++i) { pair Q = dir(135-90*i), P = (.5,.5)+Q/2^.5; label("$"+lbl[i]+"'$", P, Q); label("$"+lbl[i]+"$",D2+rotate(theta)*(r*P), rotate(theta)*Q); }[/asy]

2021 Saint Petersburg Mathematical Olympiad, 7

A square is cut into red and blue rectangles. The sum of areas of red triangles is equal to the sum of areas of the blue ones. For each blue rectangle, we write the ratio of the length of its vertical side to the length of its horizontal one and for each red rectangle, the ratio of the length of its horizontal side to the length of its vertical side. Find the smallest possible value of the sum of all the written numbers.