Found problems: 1679
2013 AMC 8, 16
A number of students from Fibonacci Middle School are taking part in a community service project. The ratio of $8^\text{th}$-graders to $6^\text{th}$-graders is $5:3$, and the the ratio of $8^\text{th}$-graders to $7^\text{th}$-graders is $8:5$. What is the smallest number of students that could be participating in the project?
$\textbf{(A)}\ 16 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 55 \qquad \textbf{(D)}\ 79 \qquad \textbf{(E)}\ 89$
2010 USAMO, 6
A blackboard contains 68 pairs of nonzero integers. Suppose that for each positive integer $k$ at most one of the pairs $(k, k)$ and $(-k, -k)$ is written on the blackboard. A student erases some of the 136 integers, subject to the condition that no two erased integers may add to 0. The student then scores one point for each of the 68 pairs in which at least one integer is erased. Determine, with proof, the largest number $N$ of points that the student can guarantee to score regardless of which 68 pairs have been written on the board.
1983 Bulgaria National Olympiad, Problem 3
A regular triangular pyramid $ABCD$ with the base side $AB=a$ and the lateral edge $AD=b$ is given. Let $M$ and $N$ be the midpoints of $AB$ and $CD$ respectively. A line $\alpha$ through $MN$ intersects the edges $AD$ and $BC$ at $P$ and $Q$, respectively.
(a) Prove that $AP/AD=BQ/BC$.
(b) Find the ratio $AP/AD$ which minimizes the area of $MQNP$.
2004 AMC 10, 20
Points $E$ and $F$ are located on square $ABCD$ so that $\Delta BEF$ is equilateral. What is the ratio of the area of $\Delta DEF$ to that of $\Delta ABE$?
[asy]
pair A=origin, B=(1,0), C=(1,1), D=(0,1), X=B+2*dir(165), E=intersectionpoint(B--X, A--D), Y=B+2*dir(105), F=intersectionpoint(B--Y, D--C);
draw(B--C--D--A--B--F--E--B);
pair point=(0.5,0.5);
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$F$", F, dir(point--F));[/asy]
$\textbf{(A)}\; \frac43\qquad \textbf{(B)}\; \frac32\qquad \textbf{(C)}\; \sqrt3\qquad \textbf{(D)}\; 2\qquad \textbf{(E)}\; 1+\sqrt3\qquad$
1952 AMC 12/AHSME, 48
Two cyclists, $ k$ miles apart, and starting at the same time, would be together in $ r$ hours if they traveled in the same direction, but would pass each other in $ t$ hours if they traveled in opposite directions. The ratio of the speed of the faster cyclist to that of the slower is:
$ \textbf{(A)}\ \frac {r \plus{} t}{r \minus{} t} \qquad\textbf{(B)}\ \frac {r}{r \minus{} t} \qquad\textbf{(C)}\ \frac {r \plus{} t}{r} \qquad\textbf{(D)}\ \frac {r}{t} \qquad\textbf{(E)}\ \frac {r \plus{} k}{t \minus{} k}$
1987 Bulgaria National Olympiad, Problem 2
Let there be given a polygon $P$ which is mapped onto itself by two rotations: $\rho_1$ with center $O_1$ and angle $\omega_1$, and $\rho_2$ with center $O_2$ and angle $\omega_2~(0<\omega_i<2\pi)$. Show that the ratio $\frac{\omega_1}{\omega_2}$ is rational.
1985 AMC 12/AHSME, 6
One student in a class of boys and girls is chosen to represent the class. Each student is equally likely to be chosen and the probability that a boy is chosen is $ \frac23$ of the probability that a girl is chosen. The ratio of the number of boys to the total number of boys and girls is
$ \textbf{(A)}\ \frac13 \qquad \textbf{(B)}\ \frac25 \qquad \textbf{(C)}\ \frac12 \qquad \textbf{(D)}\ \frac35 \qquad \textbf{(E)}\ \frac23$
2007 India IMO Training Camp, 1
Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic.
[i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]
2013 USAMO, 6
Let $ABC$ be a triangle. Find all points $P$ on segment $BC$ satisfying the following property: If $X$ and $Y$ are the intersections of line $PA$ with the common external tangent lines of the circumcircles of triangles $PAB$ and $PAC$, then \[\left(\frac{PA}{XY}\right)^2+\frac{PB\cdot PC}{AB\cdot AC}=1.\]
2006 AMC 10, 4
Circles of diameter 1 inch and 3 inches have the same center. The smaller circle is painted red, and the portion outside the smaller circle and inside the larger circle is painted blue. What is the ratio of the blue-painted area to the red-painted area?
$ \textbf{(A) } 2 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 8 \qquad \textbf{(E) } 9$
1996 USAMO, 1
Prove that the average of the numbers $n \sin n^{\circ} \; (n = 2,4,6,\ldots,180)$ is $\cot 1^{\circ}$.
1973 Swedish Mathematical Competition, 3
$ABC$ is a triangle with $\angle A = 90^\circ$, $\angle B = 60^\circ$. The points $A_1$, $B_1$, $C_1$ on $BC$, $CA$, $AB$ respectively are such that $A_1B_1C_1$ is equilateral and the perpendiculars (to $BC$ at $A_1$, to $CA$ at $B_1$ and to $AB$ at $C_1$) meet at a point $P$ inside the triangle. Find the ratios $PA_1:PB_1:PC_1$.
2016 AMC 12/AHSME, 4
The ratio of the measures of two acute angles is $5:4$, and the complement of one of these two angles is twice as large as the complement of the other. What is the sum of the degree measures of the two angles?
$\textbf{(A)}\ 75\qquad\textbf{(B)}\ 90\qquad\textbf{(C)}\ 135\qquad\textbf{(D)}\ 150\qquad\textbf{(E)}\ 270$
2022 Bulgaria National Olympiad, 5
Let $ABC$ be an isosceles triangle with $AB=4$, $BC=CA=6$. On the segment $AB$ consecutively lie points $X_{1},X_{2},X_{3},\ldots$ such that the lengths of the segments $AX_{1},X_{1}X_{2},X_{2}X_{3},\ldots$ form an infinite geometric progression with starting value $3$ and common ratio $\frac{1}{4}$. On the segment $CB$ consecutively lie points $Y_{1},Y_{2},Y_{3},\ldots$ such that the lengths of the segments $CY_{1},Y_{1}Y_{2},Y_{2}Y_{3},\ldots$ form an infinite geometric progression with starting value $3$ and common ratio $\frac{1}{2}$. On the segment $AC$ consecutively lie points $Z_{1},Z_{2},Z_{3},\ldots$ such that the lengths of the segments $AZ_{1},Z_{1}Z_{2},Z_{2}Z_{3},\ldots$ form an infinite geometric progression with starting value $3$ and common ratio $\frac{1}{2}$. Find all triplets of positive integers $(a,b,c)$ such that the segments $AY_{a}$, $BZ_{b}$ and $CX_{c}$ are concurrent.
1998 Iran MO (3rd Round), 2
Let $ABCD$ be a cyclic quadrilateral. Let $E$ and $F$ be variable points on the sides $AB$ and $CD$, respectively, such that $AE:EB=CF:FD$. Let $P$ be the point on the segment $EF$ such that $PE:PF=AB:CD$. Prove that the ratio between the areas of triangles $APD$ and $BPC$ does not depend on the choice of $E$ and $F$.
1970 AMC 12/AHSME, 24
An equilateral triangle and a regular hexagon have equal perimeters. If the area of the triangle is $2$, then the area of the hexagon is
$\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }4\qquad\textbf{(D) }6\qquad \textbf{(E) }12$
1957 AMC 12/AHSME, 18
Circle $ O$ has diameters $ AB$ and $ CD$ perpendicular to each other. $ AM$ is any chord intersecting $ CD$ at $ P$. Then $ AP\cdot AM$ is equal to:
[asy]defaultpen(linewidth(.8pt));
unitsize(2cm);
pair O = origin;
pair A = (-1,0);
pair B = (1,0);
pair C = (0,1);
pair D = (0,-1);
pair M = dir(45);
pair P = intersectionpoint(O--C,A--M);
draw(Circle(O,1));
draw(A--B);
draw(C--D);
draw(A--M);
label("$A$",A,W);
label("$B$",B,E);
label("$C$",C,N);
label("$D$",D,S);
label("$M$",M,NE);
label("$O$",O,NE);
label("$P$",P,NW);[/asy]$ \textbf{(A)}\ AO\cdot OB \qquad \textbf{(B)}\ AO\cdot AB\qquad \textbf{(C)}\ CP\cdot CD \qquad \textbf{(D)}\ CP\cdot PD\qquad$
$ \textbf{(E)}\ CO\cdot OP$
2013 AMC 10, 18
Let points $ A = (0,0) , \ B = (1,2), \ C = (3,3), $ and $ D = (4,0) $. Quadrilateral $ ABCD $ is cut into equal area pieces by a line passing through $ A $. This line intersects $ \overline{CD} $ at point $ \left (\frac{p}{q}, \frac{r}{s} \right ) $, where these fractions are in lowest terms. What is $ p + q + r + s $?
$ \textbf{(A)} \ 54 \qquad \textbf{(B)} \ 58 \qquad \textbf{(C)} \ 62 \qquad \textbf{(D)} \ 70 \qquad \textbf{(E)} \ 75 $
1980 AMC 12/AHSME, 16
Four of the eight vertices of a cube are the vertices of a regular tetrahedron. Find the ratio of the surface area of the cube to the surface area of the tetrahedron.
$\text{(A)} \ \sqrt 2 \qquad \text{(B)} \ \sqrt 3 \qquad \text{(C)} \ \sqrt{\frac{3}{2}} \qquad \text{(D)} \ \frac{2}{\sqrt{3}} \qquad \text{(E)} \ 2$
2011 AMC 12/AHSME, 7
Let $x$ and $y$ be two-digit positive integers with mean 60. What is the maximum value of the ratio $\frac{x}{y}$?
$ \textbf{(A)}\ 3 \qquad
\textbf{(B)}\ \frac{33}{7} \qquad
\textbf{(C)}\ \frac{39}{7} \qquad
\textbf{(D)}\ 9 \qquad
\textbf{(E)}\ \frac{99}{10} $
2004 AMC 12/AHSME, 15
Brenda and Sally run in opposite directions on a circular track, starting at diametrically opposite points. They first meet after Brenda has run $ 100$ meters. They next meet after Sally has run $ 150$ meters past their first meeting point. Each girl runs at a constant speed. What is the length of the track in meters?
$ \textbf{(A)}\ 250 \qquad \textbf{(B)}\ 300 \qquad \textbf{(C)}\ 350 \qquad \textbf{(D)}\ 400\qquad \textbf{(E)}\ 500$
2004 Oral Moscow Geometry Olympiad, 1
$E$ and $F$ are the midpoints of the sides $BC$ and $AD$ of the convex quadrilateral $ABCD$. Prove that the segment $EF$ divides the diagonals $AC$ and $BD$ in the same ratio.
2005 IMO, 1
Six points are chosen on the sides of an equilateral triangle $ABC$: $A_1$, $A_2$ on $BC$, $B_1$, $B_2$ on $CA$ and $C_1$, $C_2$ on $AB$, such that they are the vertices of a convex hexagon $A_1A_2B_1B_2C_1C_2$ with equal side lengths.
Prove that the lines $A_1B_2$, $B_1C_2$ and $C_1A_2$ are concurrent.
[i]Bogdan Enescu, Romania[/i]
1949-56 Chisinau City MO, 46
Determine the locus of points, for whom the ratio of the distances to two given points has a constant value.
Novosibirsk Oral Geo Oly IX, 2017.6
In trapezoid $ABCD$, diagonal $AC$ is the bisector of angle $A$. Point $K$ is the midpoint of diagonal $AC$. It is known that $DC = DK$. Find the ratio of the bases $AD: BC$.