This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1342

2012 Sharygin Geometry Olympiad, 1

Determine all integer $n$ such that a surface of an $n \times n \times n$ grid cube can be pasted in one layer by paper $1 \times 2$ rectangles so that each rectangle has exactly five neighbors (by a line segment). (A.Shapovalov)

1989 IMO Longlists, 3

Ali Barber, the carpet merchant, has a rectangular piece of carpet whose dimensions are unknown. Unfortunately, his tape measure is broken and he has no other measuring instruments. However, he finds that if he lays it flat on the floor of either of his storerooms, then each corner of the carpet touches a different wall of that room. If the two rooms have dimensions of 38 feet by 55 feet and 50 feet by 55 feet, what are the carpet dimensions?

2011 Oral Moscow Geometry Olympiad, 1

The bisector of angle $B$ and the bisector of external angle $D$ of rectangle $ABCD$ intersect side $AD$ and line $AB$ at points $M$ and $K$, respectively. Prove that the segment $MK$ is equal and perpendicular to the diagonal of the rectangle.

2011 India IMO Training Camp, 3

Consider a $ n\times n $ square grid which is divided into $ n^2 $ unit squares(think of a chess-board). The set of all unit squares intersecting the main diagonal of the square or lying under it is called an $n$-staircase. Find the number of ways in which an $n$-stair case can be partitioned into several rectangles, with sides along the grid lines, having mutually distinct areas.

2011 Sharygin Geometry Olympiad, 2

Peter made a paper rectangle, put it on an identical rectangle and pasted both rectangles along their perimeters. Then he cut the upper rectangle along one of its diagonals and along the perpendiculars to this diagonal from two remaining vertices. After this he turned back the obtained triangles in such a way that they, along with the lower rectangle form a new rectangle. Let this new rectangle be given. Restore the original rectangle using compass and ruler.

2003 AMC 10, 12

A point $ (x,y)$ is randomly picked from inside the rectangle with vertices $ (0,0)$, $ (4,0)$, $ (4,1)$, and $ (0,1)$. What is the probability that $ x<y$? $ \textbf{(A)}\ \frac{1}{8} \qquad \textbf{(B)}\ \frac{1}{4} \qquad \textbf{(C)}\ \frac{3}{8} \qquad \textbf{(D)}\ \frac{1}{2} \qquad \textbf{(E)}\ \frac{3}{4}$

2007 Hungary-Israel Binational, 1

A given rectangle $ R$ is divided into $mn$ small rectangles by straight lines parallel to its sides. (The distances between the parallel lines may not be equal.) What is the minimum number of appropriately selected rectangles’ areas that should be known in order to determine the area of $ R$?

2003 Austria Beginners' Competition, 4

Prove that every rectangle circumscribed by a square is itself a square. (A rectangle is circumscribed by a square if there is exactly one corner point of the square on each side of the rectangle.)

1999 AMC 12/AHSME, 22

The graphs of $ y \equal{} \minus{}|x \minus{} a| \plus{} b$ and $ y \equal{} |x \minus{} c| \plus{} d$ intersect at points $ (2,5)$ and $ (8,3)$. Find $ a \plus{} c$. $ \textbf{(A)}\ 7\qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 10\qquad \textbf{(D)}\ 13\qquad \textbf{(E)}\ 18$

2012-2013 SDML (Middle School), 11

What is the smallest possible area of a rectangle that can completely contain the shape formed by joining six squares of side length $8$ cm as shown below? [asy] size(5cm,0); draw((0,2)--(0,3)); draw((1,1)--(1,3)); draw((2,0)--(2,3)); draw((3,0)--(3,2)); draw((4,0)--(4,1)); draw((2,0)--(4,0)); draw((1,1)--(4,1)); draw((0,2)--(3,2)); draw((0,3)--(2,3)); [/asy] $\text{(A) }384\text{ cm}^2\qquad\text{(B) }576\text{ cm}^2\qquad\text{(C) }672\text{ cm}^2\qquad\text{(D) }768\text{ cm}^2\qquad\text{(E) }832\text{ cm}^2$

Estonia Open Junior - geometry, 2012.1.3

A rectangle $ABEF$ is drawn on the leg $AB$ of a right triangle $ABC$, whose apex $F$ is on the leg $AC$. Let $X$ be the intersection of the diagonal of the rectangle $AE$ and the hypotenuse $BC$ of the triangle. In what ratio does point $X$ divide the hypotenuse $BC$ if it is known that $| AC | = 3 | AB |$ and $| AF | = 2 | AB |$?

2018 PUMaC Geometry B, 5

Consider rectangle $ABCD$ with $AB=30$ and $BC=60$. Construct circle $T$ whose diameter is $AD$. Construct circle $S$ whose diameter is $AB$. Let circles $S$ and $T$ intersect at $P$ such that $P\neq A$. Let $AP$ intersect $BC$ at $E$. Let $F$ be the point on $AB$ such that $EF$ is tangent to the circle with diameter $AD$. Find the area of triangle $AEF$.

2013 Online Math Open Problems, 19

$A,B,C$ are points in the plane such that $\angle ABC=90^\circ$. Circles with diameters $BA$ and $BC$ meet at $D$. If $BA=20$ and $BC=21$, then the length of segment $BD$ can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. What is $m+n$? [i]Ray Li[/i]

2010 Greece Junior Math Olympiad, 2

Let $ABCD$ be a rectangle with sides $AB=a$ and $BC=b$. Let $O$ be the intersection point of it's diagonals. Extent side $BA$ towards $A$ at a segment $AE=AO$, and diagonal $DB$ towards $B$ at a segment $BZ=BO$. If the triangle $EZC$ is an equilateral, then prove that: i) $b=a\sqrt3$ ii) $AZ=EO$ iii) $EO \perp ZD$

2011 May Olympiad, 3

In the rectangle $ABCD, BC = 5, EC = 1/3 CD$ and $F$ is the point where $AE$ and $BD$ are cut. The triangle $DFE$ has area $12$ and the triangle $ABF$ has area $27$. Find the area of the quadrilateral $BCEF$ . [img]https://1.bp.blogspot.com/-4w6e729AF9o/XNY9hqHaBaI/AAAAAAAAKL0/eCaNnWmgc7Yj9uV4z29JAvTcWCe21NIMgCK4BGAYYCw/s400/may%2B2011%2Bl1.png[/img]

2000 Romania Team Selection Test, 3

Determine all pairs $(m,n)$ of positive integers such that a $m\times n$ rectangle can be tiled with L-trominoes.

2013 Hanoi Open Mathematics Competitions, 10

Consider the set of all rectangles with a given area $S$. Find the largest value o $ M = \frac{S}{2S+p + 2}$ where $p$ is the perimeter of the rectangle.

1999 National Olympiad First Round, 17

In a regular pyramid with top point $ T$ and equilateral base $ ABC$, let $ P$, $ Q$, $ R$, $ S$ be the midpoints of $ \left[AB\right]$, $ \left[BC\right]$, $ \left[CT\right]$ and $ \left[TA\right]$, respectively. If $ \left|AB\right| \equal{} 6$ and the altitude of pyramid is equal to $ 2\sqrt {15}$, then area of $ PQRS$ will be $\textbf{(A)}\ 4\sqrt {15} \qquad\textbf{(B)}\ 8\sqrt {2} \qquad\textbf{(C)}\ 8\sqrt {3} \qquad\textbf{(D)}\ 6\sqrt {5} \qquad\textbf{(E)}\ 9\sqrt {2}$

2006 India National Olympiad, 4

Some 46 squares are randomly chosen from a $9 \times 9$ chess board and colored in [color=red]red[/color]. Show that there exists a $2\times 2$ block of 4 squares of which at least three are colored in [color=red]red[/color].

2024 USA TSTST, 9

Let $n \ge 2$ be a fixed integer. The cells of an $n \times n$ table are filled with the integers from $1$ to $n^2$ with each number appearing exactly once. Let $N$ be the number of unordered quadruples of cells on this board which form an axis-aligned rectangle, with the two smaller integers being on opposite vertices of this rectangle. Find the largest possible value of $N$. [i]Anonymous[/i]

1974 IMO Shortlist, 11

We consider the division of a chess board $8 \times 8$ in p disjoint rectangles which satisfy the conditions: [b]a)[/b] every rectangle is formed from a number of full squares (not partial) from the 64 and the number of white squares is equal to the number of black squares. [b]b)[/b] the numbers $\ a_{1}, \ldots, a_{p}$ of white squares from $p$ rectangles satisfy $a_1, , \ldots, a_p.$ Find the greatest value of $p$ for which there exists such a division and then for that value of $p,$ all the sequences $a_{1}, \ldots, a_{p}$ for which we can have such a division. [color=#008000]Moderator says: see [url]https://artofproblemsolving.com/community/c6h58591[/url][/color]

2014 ELMO Shortlist, 4

Let $ABCD$ be a quadrilateral inscribed in circle $\omega$. Define $E = AA \cap CD$, $F = AA \cap BC$, $G = BE \cap \omega$, $H = BE \cap AD$, $I = DF \cap \omega$, and $J = DF \cap AB$. Prove that $GI$, $HJ$, and the $B$-symmedian are concurrent. [i]Proposed by Robin Park[/i]

2008 AMC 10, 25

A round table has radius $ 4$. Six rectangular place mats are placed on the table. Each place mat has width $ 1$ and length $ x$ as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length $ x$. Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is $ x$? [asy]unitsize(4mm); defaultpen(linewidth(.8)+fontsize(8)); draw(Circle((0,0),4)); path mat=(-2.687,-1.5513)--(-2.687,1.5513)--(-3.687,1.5513)--(-3.687,-1.5513)--cycle; draw(mat); draw(rotate(60)*mat); draw(rotate(120)*mat); draw(rotate(180)*mat); draw(rotate(240)*mat); draw(rotate(300)*mat); label("$x$",(-2.687,0),E); label("$1$",(-3.187,1.5513),S);[/asy]$ \textbf{(A)}\ 2\sqrt {5} \minus{} \sqrt {3} \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ \frac {3\sqrt {7} \minus{} \sqrt {3}}{2} \qquad \textbf{(D)}\ 2\sqrt {3} \qquad \textbf{(E)}\ \frac {5 \plus{} 2\sqrt {3}}{2}$

2010 Contests, 2

Two tangents $AT$ and $BT$ touch a circle at $A$ and $B$, respectively, and meet perpendicularly at $T$. $Q$ is on $AT$, $S$ is on $BT$, and $R$ is on the circle, so that $QRST$ is a rectangle with $QT = 8$ and $ST = 9$. Determine the radius of the circle.

1995 Kurschak Competition, 1

Given in the plane is a lattice and a grid rectangle with sides parallel to the coordinate axes. We divide the rectangle into grid triangles with area $\frac12$. Prove that the number of right angled triangles is at least twice as much as the shorter side of the rectangle. (A grid polygon is a polygon such that both coordinates of each vertex is an integer.)