Found problems: 1342
2019 239 Open Mathematical Olympiad, 2
Several cells are marked in a $100 \times 100$ table. Vasya wants to split the square into several rectangles such that each rectangle does not contain more than two marked cells and there are at most $k$ rectangles containing less than two cells. What is the smallest $k$ such that Vasya will certainly be able to do this?
2011 Irish Math Olympiad, 4
The incircle $\mathcal{C}_1$ of triangle $ABC$ touches the sides $AB$ and $AC$ at the points $D$ and $E$, respectively. The incircle $\mathcal{C}_2$ of the triangle $ADE$ touches the sides $AB$ and $AC$ at the points $P$ and $Q$, and intersects the circle $\mathcal{C}_1$ at the points $M$ and $n$. Prove that
(a) the center of the circle $\mathcal{C}_2$ lies on the circle $\mathcal{C}_1$.
(b) the four points $M,N,P,Q$ in appropriate order form a rectangle if and only if twice the radius of $\mathcal{C}_1$ is three times the radius of $\mathcal{C}_2$.
1971 IMO Longlists, 1
The points $S(i, j)$ with integer Cartesian coordinates $0 < i \leq n, 0 < j \leq m, m \leq n$, form a lattice. Find the number of:
[b](a)[/b] rectangles with vertices on the lattice and sides parallel to the coordinate axes;
[b](b)[/b] squares with vertices on the lattice and sides parallel to the coordinate axes;
[b](c)[/b] squares in total, with vertices on the lattice.
1970 AMC 12/AHSME, 12
A circle with radius $r$ is tangent to sides $AB$, $AD$, and $CD$ of rectangle $ABCD$ and passes through the midpoint of diagonal $AC$.The area of the rectangle in terms of $r$, is
$\textbf{(A) }4r^2\qquad\textbf{(B) }6r^2\qquad\textbf{(C) }8r^2\qquad\textbf{(D) }12r^2\qquad \textbf{(E) }20r^2$
2000 Korea - Final Round, 3
A rectangle $ABCD$ is inscribed in a circle with centre $O$. The exterior bisectors of $\angle ABD$ and $\angle ADB$ intersect at $P$; those of $\angle DAB$ and $\angle DBA$ intersect at $Q$; those of $\angle ACD$ and $\angle ADC$ intersect at $R$; and those of $\angle DAC$ and $\angle DCA$ intersect at $S$. Prove that $P,Q,R$, and $S$ are concyclic.
2006 Germany Team Selection Test, 3
Consider a $m\times n$ rectangular board consisting of $mn$ unit squares. Two of its unit squares are called [i]adjacent[/i] if they have a common edge, and a [i]path[/i] is a sequence of unit squares in which any two consecutive squares are adjacent. Two parths are called [i]non-intersecting[/i] if they don't share any common squares.
Each unit square of the rectangular board can be colored black or white. We speak of a [i]coloring[/i] of the board if all its $mn$ unit squares are colored.
Let $N$ be the number of colorings of the board such that there exists at least one black path from the left edge of the board to its right edge. Let $M$ be the number of colorings of the board for which there exist at least two non-intersecting black paths from the left edge of the board to its right edge.
Prove that $N^{2}\geq M\cdot 2^{mn}$.
2009 India National Olympiad, 5
Let $ ABC$ be an acute angled triangle and let $ H$ be its ortho centre. Let $ h_{max}$ denote the largest altitude of the triangle $ ABC$. Prove that:
$AH \plus{} BH \plus{} CH\leq2h_{max}$
MathLinks Contest 6th, 1.2
Let $ABCD$ be a rectangle of center $O$ in the plane $\alpha$, and let $V \notin\alpha$ be a point in space such that $V O \perp \alpha$. Let $A' \in (V A)$, $B'\in (V B)$, $C'\in (V C)$, $D'\in (V D)$ be four points, and let $M$ and $N$ be the midpoints of the segments $A'C'$ and $B'D'$. .Prove that $MN \parallel \alpha$ if and only if $V , A', B', C', D'$ all lie on a sphere.
2003 AMC 10, 15
What is the probability that an integer in the set $ \{1,2,3,\ldots,100\}$ is divisible by $ 2$ and not divisible by $ 3$?
$ \textbf{(A)}\ \frac{1}{6} \qquad
\textbf{(B)}\ \frac{33}{100} \qquad
\textbf{(C)}\ \frac{17}{50} \qquad
\textbf{(D)}\ \frac{1}{2} \qquad
\textbf{(E)}\ \frac{18}{25}$
2022 Centroamerican and Caribbean Math Olympiad, 4
Let $A_1A_2A_3A_4$ be a rectangle and let $S_1,S_2,S_3,S_4$ four circumferences inside of the rectangle such that $S_k$ and $S_{k+1}$ are tangent to each other and tangent to the side $A_kA_{k+1}$ for $k=1,2,3,4$, where $A_5=A_1$ and $S_5=S_1$. Prove that $A_1A_2A_3A_4$ is a square.
1982 AMC 12/AHSME, 25
The adjacent map is part of a city: the small rectangles are rocks, and the paths in between are streets. Each morning, a student walks from intersection A to intersection B, always walking along streets shown, and always going east or south. For variety, at each intersection where he has a choice, he chooses with probability $\frac{1}{2}$ whether to go east or south. Find the probability that through any given morning, he goes through $C$.
[asy]
defaultpen(linewidth(0.7)+fontsize(8));
size(250);
path p=origin--(5,0)--(5,3)--(0,3)--cycle;
path q=(5,19)--(6,19)--(6,20)--(5,20)--cycle;
int i,j;
for(i=0; i<5; i=i+1) {
for(j=0; j<6; j=j+1) {
draw(shift(6*i, 4*j)*p);
}}
clip((4,2)--(25,2)--(25,21)--(4,21)--cycle);
fill(q^^shift(18,-16)*q^^shift(18,-12)*q, black);
label("A", (6,19), SE);
label("B", (23,4), NW);
label("C", (23,8), NW);
draw((26,11.5)--(30,11.5), Arrows(5));
draw((28,9.5)--(28,13.5), Arrows(5));
label("N", (28,13.5), N);
label("W", (26,11.5), W);
label("E", (30,11.5), E);
label("S", (28,9.5), S);[/asy]
$\textbf {(A) } \frac{11}{32} \qquad \textbf {(B) } \frac 12 \qquad \textbf {(C) } \frac 47 \qquad \textbf {(D) } \frac{21}{32} \qquad \textbf {(E) } \frac 34$
2014 Contests, 3
Let $ABCD$ be a rectangle and $P$ a point outside of it such that $\angle{BPC} = 90^{\circ}$ and the area of the pentagon $ABPCD$ is equal to $AB^{2}$.
Show that $ABPCD$ can be divided in 3 pieces with straight cuts in such a way that a square can be built using those 3 pieces, without leaving any holes or placing pieces on top of each other.
Note: the pieces can be rotated and flipped over.
2007 India Regional Mathematical Olympiad, 1
Let $ ABC$ be an acute-angled triangle; $ AD$ be the bisector of $ \angle BAC$ with $ D$ on $ BC$; and $ BE$ be the altitude from $ B$ on $ AC$.
Show that $ \angle CED > 45^\circ .$
[b][weightage 17/100][/b]
2017 BAMO, E/4
Consider a convex $n$-gon $A_1A_2 \dots A_n$. (Note: In a convex polygon, all interior angles are less than $180 \circ$.) Let $h$ be a positive number. Using the sides of the polygon as bases, we draw $n$ rectangles, each of height $h$, so that each rectangle is either entirely inside the $n$-gon or partially overlaps the inside of the $n$-gon.
As an example, the left figure below shows a pentagon with a correct configuration of rectangles, while the right figure shows an incorrect configuration of rectangles (since some of the rectangles do not overlap with the pentagon):
2005 District Olympiad, 2
Let $f:[0,1]\to\mathbb{R}$ be a continuous function and let $\{a_n\}_n$, $\{b_n\}_n$ be sequences of reals such that
\[ \lim_{n\to\infty} \int^1_0 | f(x) - a_nx - b_n | dx = 0 . \]
Prove that:
a) The sequences $\{a_n\}_n$, $\{b_n\}_n$ are convergent;
b) The function $f$ is linear.
1988 Romania Team Selection Test, 5
The cells of a $11\times 11$ chess-board are colored in 3 colors. Prove that there exists on the board a $m\times n$ rectangle such that the four cells interior to the rectangle and containing the four vertices of the rectangle have the same color.
[i]Ioan Tomescu[/i]
1995 All-Russian Olympiad Regional Round, 10.4
There are several equal (possibly overlapping) square-shaped napkins on a rectangular table, with sides parallel to the sides of the table. Prove that it is possible to nail some of them to the table in such a way that every napkin is nailed exactly once.
1972 IMO Longlists, 43
A fixed point $A$ inside a circle is given. Consider all chords $XY$ of the circle such that $\angle XAY$ is a right angle, and for all such chords construct the point $M$ symmetric to $A$ with respect to $XY$ . Find the locus of points $M$.
2004 AIME Problems, 12
Let $S$ be the set of ordered pairs $(x, y)$ such that $0<x\le 1$, $0<y\le 1$, and $\left[\log_2{\left(\frac 1x\right)}\right]$ and $\left[\log_5{\left(\frac 1y\right)}\right]$ are both even. Given that the area of the graph of $S$ is $m/n$, where $m$ and $n$ are relatively prime positive integers, find $m+n$. The notation $[z]$ denotes the greatest integer that is less than or equal to $z$.
2013 AMC 8, 24
Squares $ABCD$, $EFGH$, and $GHIJ$ are equal in area. Points $C$ and $D$ are the midpoints of sides $IH$ ad $HE$, respectively. What is the ratio of the area of the shaded pentagon $AJICB$ to the sum of the areas of the three squares?
[asy]
pair A,B,C,D,E,F,G,H,I,J;
A = (0.5,2);
B = (1.5,2);
C = (1.5,1);
D = (0.5,1);
E = (0,1);
F = (0,0);
G = (1,0);
H = (1,1);
I = (2,1);
J = (2,0);
draw(A--B);
draw(C--B);
draw(D--A);
draw(F--E);
draw(I--J);
draw(J--F);
draw(G--H);
draw(A--J);
filldraw(A--B--C--I--J--cycle,grey);
draw(E--I);
dot("$A$", A, NW);
dot("$B$", B, NE);
dot("$C$", C, NE);
dot("$D$", D, NW);
dot("$E$", E, NW);
dot("$F$", F, SW);
dot("$G$", G, S);
dot("$H$", H, N);
dot("$I$", I, NE);
dot("$J$", J, SE);[/asy]
$\textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac7{24} \qquad \textbf{(C)}\ \frac13 \qquad \textbf{(D)}\ \frac38 \qquad \textbf{(E)}\ \frac5{12}$
1983 Tournament Of Towns, (033) O2
(a) A regular $4k$-gon is cut into parallelograms. Prove that among these there are at least $k$ rectangles.
(b) Find the total area of the rectangles in (a) if the lengths of the sides of the $4k$-gon equal $a$.
(VV Proizvolov, Moscow)
2000 Tournament Of Towns, 3
$A$ is a fixed point inside a given circle. Determine the locus of points $C$ such that $ABCD$ is a rectangle with $B$ and $D$ on the circumference of the given circle.
(M Panov)
2010 AMC 10, 2
Four identical squares and one rectangle are placed together to form one large square as shown. The length of the rectangle is how many times as large as its width?
[asy]unitsize(8mm);
defaultpen(linewidth(.8pt));
draw(scale(4)*unitsquare);
draw((0,3)--(4,3));
draw((1,3)--(1,4));
draw((2,3)--(2,4));
draw((3,3)--(3,4));[/asy]$ \textbf{(A)}\ \frac {5}{4} \qquad \textbf{(B)}\ \frac {4}{3} \qquad \textbf{(C)}\ \frac {3}{2} \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ 3$
1988 AMC 8, 17
The shaded region formed by the two intersecting perpendicular rectangles, in square units, is
[asy]
fill((0,0)--(6,0)--(6,-3.5)--(9,-3.5)--(9,0)--(10,0)--(10,2)--(9,2)--(9,4.5)--(6,4.5)--(6,2)--(0,2)--cycle,black);
label("2",(0,.9),W);
label("3",(7.3,4.5),N);
draw((0,-3.3)--(0,-5.3),linewidth(1));
draw((0,-4.3)--(3.7,-4.3),linewidth(1));
label("10",(4.7,-3.7),S);
draw((5.7,-4.3)--(10,-4.3),linewidth(1));
draw((10,-3.3)--(10,-5.3),linewidth(1));
draw((11,4.5)--(13,4.5),linewidth(1));
draw((12,4.5)--(12,2),linewidth(1));
label("8",(11.3,1),E);
draw((12,0)--(12,-3.5),linewidth(1));
draw((11,-3.5)--(13,-3.5),linewidth(1));[/asy]
$ \text{(A)}\ 23\qquad\text{(B)}\ 38\qquad\text{(C)}\ 44\qquad\text{(D)}\ 46\qquad\text{(E)}\ \text{unable to be determined from the information given} $
1955 Moscow Mathematical Olympiad, 291
Find all rectangles that can be cut into $13$ equal squares.