Found problems: 1342
2004 Purple Comet Problems, 7
A rectangle has area $1100$. If the length is increased by ten percent and the width is
decreased by ten percent, what is the area of the new rectangle?
1996 IMO Shortlist, 2
A square $ (n \minus{} 1) \times (n \minus{} 1)$ is divided into $ (n \minus{} 1)^2$ unit squares in the usual manner. Each of the $ n^2$ vertices of these squares is to be coloured red or blue. Find the number of different colourings such that each unit square has exactly two red vertices. (Two colouring schemse are regarded as different if at least one vertex is coloured differently in the two schemes.)
2013 Denmark MO - Mohr Contest, 2
The figure shows a rectangle, its circumscribed circle and four semicircles, which have the rectangle’s sides as diameters. Prove that the combined area of the four dark gray crescentshaped regions is equal to the area of the light gray rectangle.
[img]https://1.bp.blogspot.com/-gojv6KfBC9I/XzT9ZMKrIeI/AAAAAAAAMVU/NB-vUldjULI7jvqiFWmBC_Sd8QFtwrc7wCLcBGAsYHQ/s0/2013%2BMohr%2Bp3.png[/img]
2004 All-Russian Olympiad, 4
A parallelepiped is cut by a plane along a 6-gon. Supposed this 6-gon can be put into a certain rectangle $ \pi$ (which means one can put the rectangle $ \pi$ on the parallelepiped's plane such that the 6-gon is completely covered by the rectangle). Show that one also can put one of the parallelepiped' faces into the rectangle $ \pi.$
1973 Bundeswettbewerb Mathematik, 1
In a square of sidelength $7$, $51$ points are given. Show that there's a disk of radius $1$ covering at least $3$ of these points.
2017 Tuymaada Olympiad, 7
A point $E$ lies on the extension of the side $AD$ of the rectangle $ABCD$ over $D$. The ray $EC$ meets the circumcircle $\omega$ of $ABE$ at the point $F\ne E$. The rays $DC$ and $AF$ meet at $P$. $H$ is the foot of the perpendicular drawn from $C$ to the line $\ell$ going through $E$ and parallel to $AF$. Prove that the line $PH$ is tangent to $\omega$.
(A. Kuznetsov)
2009 IMO Shortlist, 4
For an integer $m\geq 1$, we consider partitions of a $2^m\times 2^m$ chessboard into rectangles consisting of cells of chessboard, in which each of the $2^m$ cells along one diagonal forms a separate rectangle of side length $1$. Determine the smallest possible sum of rectangle perimeters in such a partition.
[i]Proposed by Gerhard Woeginger, Netherlands[/i]
2006 AMC 8, 6
The letter T is formed by placing two $ 2\times 4$ inch rectangles next to each other, as shown. What is the perimeter of the T, in inches?
[asy]size(150);
draw((0,6)--(4,6)--(4,4)--(3,4)--(3,0)--(1,0)--(1,4)--(0,4)--cycle, linewidth(1));[/asy]
$ \textbf{(A)}\ 12 \qquad
\textbf{(B)}\ 16 \qquad
\textbf{(C)}\ 20 \qquad
\textbf{(D)}\ 22 \qquad
\textbf{(E)}\ 24$
2008 ITAMO, 2
A square $ (n \minus{} 1) \times (n \minus{} 1)$ is divided into $ (n \minus{} 1)^2$ unit squares in the usual manner. Each of the $ n^2$ vertices of these squares is to be coloured red or blue. Find the number of different colourings such that each unit square has exactly two red vertices. (Two colouring schemse are regarded as different if at least one vertex is coloured differently in the two schemes.)
1994 Chile National Olympiad, 7
Let $ABCD$ be a rectangle of length $m$ and width $n$, with $m, n$ positive integers. Consider a ray of light that starts from $A$, reflects with an angle of $45^o$ on an opposite side and continues reflecting away at the same angle.
$\bullet$ For any pair $(m,n)$, show that the ray meets a vertex at some point.
$\bullet$ Suppose $m$ and $n$ are coprime. Determine the number of reflections made by the ray of light before encountering a vertex for the first time.
2010 IberoAmerican, 2
Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ are perpendicular. Let $O$ be the circumcenter of $ABCD$, $K$ the intersection of the diagonals, $ L\neq O $ the intersection of the circles circumscribed to $OAC$ and $OBD$, and $G$ the intersection of the diagonals of the quadrilateral whose vertices are the midpoints of the sides of $ABCD$. Prove that $O, K, L$ and $G$ are collinear
2011 JBMO Shortlist, 6
Let $ABCD$ be a convex quadrilateral and points $E$ and $F$ on sides $AB,CD$ such that
\[\tfrac{AB}{AE}=\tfrac{CD}{DF}=n\]
If $S$ is the area of $AEFD$ show that ${S\leq\frac{AB\cdot CD+n(n-1)AD^2+n^2DA\cdot BC}{2n^2}}$
1995 AMC 12/AHSME, 21
Two nonadjacent vertices of a rectangle are $(4,3)$ and $(-4,-3)$, and the coordinates of the other two vertices are integers. The number of such rectangles is
$\textbf{(A)}\ 1 \qquad
\textbf{(B)}\ 2 \qquad
\textbf{(C)}\ 3 \qquad
\textbf{(D)}\ 4 \qquad
\textbf{(E)}\ 5$
2013 Austria Beginners' Competition, 4
Let $ABC$ be an acute-angled triangle and $D$ a point on the altitude through $C$. Let $E$, $F$, $G$ and $H$ be the midpoints of the segments $AD$, $BD$, $BC$ and $AC$. Show that $E$, $F$, $G$, and $H$ form a rectangle.
(G. Anegg, Innsbruck)
1995 Baltic Way, 20
All the vertices of a convex pentagon are on lattice points. Prove that the area of the pentagon is at least $\frac{5}{2}$.
[i]Bogdan Enescu[/i]
2012 Tuymaada Olympiad, 2
A rectangle $ABCD$ is given. Segment $DK$ is equal to $BD$ and lies on the half-line $DC$. $M$ is the midpoint of $BK$. Prove that $AM$ is the angle bisector of $\angle BAC$.
[i]Proposed by S. Berlov[/i]
2012 AIME Problems, 8
Cube $ABCDEFGH$, labeled as shown below, has edge length $1$ and is cut by a plane passing through vertex $D$ and the midpoints $M$ and $N$ of $\overline{AB}$ and $\overline{CG}$ respectively. The plane divides the cube into two solids. The volume of the larger of the two solids can be written in the form $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.
[asy]
draw((0,0)--(10,0)--(10,10)--(0,10)--cycle);
draw((0,10)--(4,13)--(14,13)--(10,10));
draw((10,0)--(14,3)--(14,13));
draw((0,0)--(4,3)--(4,13), dashed);
draw((4,3)--(14,3), dashed);
dot((0,0));
dot((0,10));
dot((10,10));
dot((10,0));
dot((4,3));
dot((14,3));
dot((14,13));
dot((4,13));
dot((14,8));
dot((5,0));
label("A", (0,0), SW);
label("B", (10,0), S);
label("C", (14,3), E);
label("D", (4,3), NW);
label("E", (0,10), W);
label("F", (10,10), SE);
label("G", (14,13), E);
label("H", (4,13), NW);
label("M", (5,0), S);
label("N", (14,8), E);
[/asy]
2017 Yasinsky Geometry Olympiad, 6
Given a circle $\omega$ of radius $r$ and a point $A$, which is far from the center of the circle at a distance $d<r$. Find the geometric locus of vertices $C$ of all possible $ABCD$ rectangles, where points $B$ and $D$ lie on the circle $\omega$.
2001 Estonia Team Selection Test, 1
Consider on the coordinate plane all rectangles whose
(i) vertices have integer coordinates;
(ii) edges are parallel to coordinate axes;
(iii) area is $2^k$, where $k = 0,1,2....$
Is it possible to color all points with integer coordinates in two colors so that no such rectangle has all its vertices of the same color?
2017 AMC 12/AHSME, 8
The ratio of the short side of a certain rectangle to the long side is equal to the ratio of the long side to the diagonal. What is the square of the ratio of the short side to the long side of this rectangle?
$\textbf{(A)} \text{ } \frac{\sqrt{3}-1}{2} \qquad \textbf{(B)} \text{ } \frac{1}{2} \qquad \textbf{(C)} \text{ } \frac{\sqrt{5}-1}{2} \qquad \textbf{(D)} \text{ } \frac{\sqrt{2}}{2} \qquad \textbf{(E)} \text{ } \frac{\sqrt{6}-1}{2}$
1993 AMC 12/AHSME, 14
The convex pentagon $ABCDE$ has $\angle A=\angle B=120^{\circ}$, $EA=AB=BC=2$ and $CD=DE=4$. What is the area of $ABCDE$?
[asy]
draw((0,0)--(1,0)--(1.5,sqrt(3)/2)--(0.5,3sqrt(3)/2)--(-0.5,sqrt(3)/2)--cycle);
dot((0,0));
dot((1,0));
dot((1.5,sqrt(3)/2));
dot((0.5,3sqrt(3)/2));
dot((-0.5,sqrt(3)/2));
label("A", (0,0), SW);
label("B", (1,0), SE);
label("C", (1.5,sqrt(3)/2), E);
label("D", (0.5,3sqrt(3)/2), N);
label("E", (-.5, sqrt(3)/2), W);
[/asy]
$ \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 7\sqrt{3} \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 9\sqrt{3} \qquad\textbf{(E)}\ 12\sqrt{5} $
1957 AMC 12/AHSME, 37
In right triangle $ ABC$, $ BC \equal{} 5$, $ AC \equal{} 12$, and $ AM \equal{} x$; $ \overline{MN} \perp \overline{AC}$, $ \overline{NP} \perp \overline{BC}$; $ N$ is on $ AB$. If $ y \equal{} MN \plus{} NP$, one-half the perimeter of rectangle $ MCPN$, then:
[asy]defaultpen(linewidth(.8pt));
unitsize(2cm);
pair A = origin;
pair M = (1,0);
pair C = (2,0);
pair P = (2,0.5);
pair B = (2,1);
pair Q = (1,0.5);
draw(A--B--C--cycle);
draw(M--Q--P);
label("$A$",A,SW);
label("$M$",M,S);
label("$C$",C,SE);
label("$P$",P,E);
label("$B$",B,NE);
label("$N$",Q,NW);[/asy]$ \textbf{(A)}\ y \equal{} \frac {1}{2}(5 \plus{} 12) \qquad \textbf{(B)}\ y \equal{} \frac {5x}{12} \plus{} \frac {12}{5}\qquad \textbf{(C)}\ y \equal{} \frac {144 \minus{} 7x}{12}\qquad$
$ \textbf{(D)}\ y \equal{} 12\qquad \qquad\quad\,\, \textbf{(E)}\ y \equal{} \frac {5x}{12} \plus{} 6$
1998 AMC 12/AHSME, 10
A large square is divided into a small square surrounded by four congruent rectangles as shown. The perimeter of each of the congruent rectangles is 14. What is the area of the large square?
[asy]unitsize(3mm);
defaultpen(linewidth(.8pt));
draw((0,0)--(7,0)--(7,7)--(0,7)--cycle);
draw((1,0)--(1,6));
draw((7,1)--(1,1));
draw((6,7)--(6,1));
draw((0,6)--(6,6));[/asy]$ \textbf{(A)}\ \ 49 \qquad \textbf{(B)}\ \ 64 \qquad \textbf{(C)}\ \ 100 \qquad \textbf{(D)}\ \ 121 \qquad \textbf{(E)}\ \ 196$
2001 Saint Petersburg Mathematical Olympiad, 11.7
Rectangles $1\times20$, $1\times 19$, ..., $1\times 1$ were cut out of $20\times20$ table. Prove that at least 85 dominoes(1×2 rectangle) can be removed from the remainder.
Proposed by S. Berlov
2002 AMC 12/AHSME, 18
A point $ P$ is randomly selected from the rectangular region with vertices $ (0, 0)$, $ (2, 0)$, $ (2, 1)$, $ (0, 1)$. What is the probability that $ P$ is closer to the origin than it is to the point $ (3, 1)$?
$ \textbf{(A)}\ \frac{1}{2} \qquad
\textbf{(B)}\ \frac{2}{3} \qquad
\textbf{(C)}\ \frac{3}{4} \qquad
\textbf{(D)}\ \frac{4}{5} \qquad
\textbf{(E)}\ 1$