This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2007 Cono Sur Olympiad, 3

Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, $CF$ where $D$, $E$, $F$ lie on $BC$, $AC$, $AB$, respectively. Let $M$ be the midpoint of $BC$. The circumcircle of triangle $AEF$ cuts the line $AM$ at $A$ and $X$. The line $AM$ cuts the line $CF$ at $Y$. Let $Z$ be the point of intersection of $AD$ and $BX$. Show that the lines $YZ$ and $BC$ are parallel.

2010 Balkan MO, 2

Let $ABC$ be an acute triangle with orthocentre $H$, and let $M$ be the midpoint of $AC$. The point $C_1$ on $AB$ is such that $CC_1$ is an altitude of the triangle $ABC$. Let $H_1$ be the reflection of $H$ in $AB$. The orthogonal projections of $C_1$ onto the lines $AH_1$, $AC$ and $BC$ are $P$, $Q$ and $R$, respectively. Let $M_1$ be the point such that the circumcentre of triangle $PQR$ is the midpoint of the segment $MM_1$. Prove that $M_1$ lies on the segment $BH_1$.

2021 Austrian MO National Competition, 5

Let $ABCD$ be a convex cyclic quadrilateral with diagonals $AC$ and $BD$. Each of the four vertixes are reflected across the diagonal on which the do not lie. (a) Investigate when the four points thus obtained lie on a straight line and give as simple an equivalent condition as possible to the cyclic quadrilateral $ABCD$ for it. (b) Show that in all other cases the four points thus obtained lie on one circle. (Theresia Eisenkölbl)

2006 ITAMO, 3

Let $A$ and $B$ be two distinct points on the circle $\Gamma$, not diametrically opposite. The point $P$, distinct from $A$ and $B$, varies on $\Gamma$. Find the locus of the orthocentre of triangle $ABP$.

Durer Math Competition CD 1st Round - geometry, 2010.C3

The sides of a pool table are $3$ and $4$ meters long.We push a ball with an angle of $45^o$ at the sides. Is it true that it returns to where it started no matter where we started it from?

2011 Serbia National Math Olympiad, 1

On sides $AB, AC, BC$ are points $M, X, Y$, respectively, such that $AX=MX$; $BY=MY$. $K$, $L$ are midpoints of $AY$ and $BX$. $O$ is circumcenter of $ABC$, $O_1$, $O_2$ are symmetric with $O$ with respect to $K$ and $L$. Prove that $X, Y, O_1, O_2$ are concyclic.

2004 Germany Team Selection Test, 2

Let two chords $AC$ and $BD$ of a circle $k$ meet at the point $K$, and let $O$ be the center of $k$. Let $M$ and $N$ be the circumcenters of triangles $AKB$ and $CKD$. Show that the quadrilateral $OMKN$ is a parallelogram.

2012 National Olympiad First Round, 17

Let $D$ be a point inside $\triangle ABC$ such that $m(\widehat{BAD})=20^{\circ}$, $m(\widehat{DAC})=80^{\circ}$, $m(\widehat{ACD})=20^{\circ}$, and $m(\widehat{DCB})=20^{\circ}$. $m(\widehat{ABD})= ?$ $ \textbf{(A)}\ 5^{\circ} \qquad \textbf{(B)}\ 10^{\circ} \qquad \textbf{(C)}\ 15^{\circ} \qquad \textbf{(D)}\ 20^{\circ} \qquad \textbf{(E)}\ 25^{\circ}$

2005 AMC 8, 23

Isosceles right triangle $ ABC$ encloses a semicircle of area $ 2\pi$. The circle has its center $ O$ on hypotenuse $ \overline{AB}$ and is tangent to sides $ \overline{AC}$ and $ \overline{BC}$. What is the area of triangle $ ABC$? [asy]defaultpen(linewidth(0.8));pair a=(4,4), b=(0,0), c=(0,4), d=(4,0), o=(2,2); draw(circle(o, 2)); clip(a--b--c--cycle); draw(a--b--c--cycle); dot(o); label("$C$", c, NW); label("$A$", a, NE); label("$O$", o, SE); label("$B$", b, SW);[/asy] $ \textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 3\pi\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 4\pi $

2023 Sharygin Geometry Olympiad, 16

Let $AH_A$ and $BH_B$ be the altitudes of a triangle $ABC$. The line $H_AH_B$ meets the circumcircle of $ABC$ at points $P$ and $Q$. Let $A'$ be the reflection of $A$ about $BC$, and $B'$ be the reflection of $B$ about $CA$. Prove that $A',B', P,Q$ are concyclic.

2005 AIME Problems, 12

Square $ABCD$ has center $O$, $AB=900$, $E$ and $F$ are on $AB$ with $AE<BF$ and $E$ between $A$ and $F$, $m\angle EOF =45^\circ$, and $EF=400$. Given that $BF=p+q\sqrt{r}$, wherer $p,q,$ and $r$ are positive integers and $r$ is not divisible by the square of any prime, find $p+q+r$.

2013 Hong kong National Olympiad, 3

Let $ABC$ be a triangle with $CA>BC>AB$. Let $O$ and $H$ be the circumcentre and orthocentre of triangle $ABC$ respectively. Denote by $D$ and $E$ the midpoints of the arcs $AB$ and $AC$ of the circumcircle of triangle $ABC$ not containing the opposite vertices. Let $D'$ be the reflection of $D$ about $AB$ and $E'$ the reflection of $E$ about $AC$. Prove that $O,H,D',E'$ are concylic if and only if $A,D',E'$ are collinear.

2014 China Team Selection Test, 4

Given circle $O$ with radius $R$, the inscribed triangle $ABC$ is an acute scalene triangle, where $AB$ is the largest side. $AH_A, BH_B,CH_C$ are heights on $BC,CA,AB$. Let $D$ be the symmetric point of $H_A$ with respect to $H_BH_C$, $E$ be the symmetric point of $H_B$ with respect to $H_AH_C$. $P$ is the intersection of $AD,BE$, $H$ is the orthocentre of $\triangle ABC$. Prove: $OP\cdot OH$ is fixed, and find this value in terms of $R$. (Edited)

1981 Canada National Olympiad, 2

Given a circle of radius $r$ and a tangent line $\ell$ to the circle through a given point $P$ on the circle. From a variable point $R$ on the circle, a perpendicular $RQ$ is drawn to $\ell$ with $Q$ on $\ell$. Determine the maximum of the area of triangle $PQR$.

2009 Pan African, 2

Point $P$ lies inside a triangle $ABC$. Let $D,E$ and $F$ be reflections of the point $P$ in the lines $BC,CA$ and $AB$, respectively. Prove that if the triangle $DEF$ is equilateral, then the lines $AD,BE$ and $CF$ intersect in a common point.

2023 Taiwan TST Round 1, G

Let $\Omega$ be the circumcircle of an isosceles trapezoid $ABCD$, in which $AD$ is parallel to $BC$. Let $X$ be the reflection point of $D$ with respect to $BC$. Point $Q$ is on the arc $BC$ of $\Omega$ that does not contain $A$. Let $P$ be the intersection of $DQ$ and $BC$. A point $E$ satisfies that $EQ$ is parallel to $PX$, and $EQ$ bisects $\angle BEC$. Prove that $EQ$ also bisects $\angle AEP$. [i]Proposed by Li4.[/i]

2012 European Mathematical Cup, 2

Let $ABC$ be an acute triangle with orthocenter $H$. Segments $AH$ and $CH$ intersect segments $BC$ and $AB$ in points $A_1$ and $C_1$ respectively. The segments $BH$ and $A_1C_1$ meet at point $D$. Let $P$ be the midpoint of the segment $BH$. Let $D'$ be the reflection of the point $D$ in $AC$. Prove that quadrilateral $APCD'$ is cyclic. [i]Proposed by Matko Ljulj.[/i]

2005 Germany Team Selection Test, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

1999 Romania Team Selection Test, 9

Let $O,A,B,C$ be variable points in the plane such that $OA=4$, $OB=2\sqrt3$ and $OC=\sqrt {22}$. Find the maximum value of the area $ABC$. [i]Mihai Baluna[/i]

2022 Azerbaijan JBMO TST, G3

In acute, scalene Triangle $ABC$, $H$ is orthocenter,$ BD$ and $CE$ are heights. $X,Y$ are reflection of $A$ from $D$,$E$ respectively such that the points$ X,Y$ are on segments $DC$ and $EB$. The intersection of circles $ HXY$ and $ADE$ is $F.$ ( $F \neq H$). Prove that$ AF$ intersects middle point of $BC$. ( $M$ in the diagram is Midpoint of $BC$)

2007 Sharygin Geometry Olympiad, 4

A quadrilateral A$BCD$ is inscribed into a circle with center $O$. Points $C', D'$ are the reflections of the orthocenters of triangles $ABD$ and $ABC$ at point $O$. Lines $BD$ and $BD'$ are symmetric with respect to the bisector of angle $ABC$. Prove that lines $AC$ and $AC'$ are symmetric with respect to the bisector of angle $DAB$.

2008 Peru IMO TST, 1

Let $ ABC$ be a triangle and let $ I$ be the incenter. $ Ia$ $ Ib$ and $ Ic$ are the excenters opposite to points $ A$ $ B$ and $ C$ respectively. Let $ La$ be the line joining the orthocenters of triangles $ IBC$ and $ IaBC$. Define $ Lb$ and $ Lc$ in the same way. Prove that $ La$ $ Lb$ and $ Lc$ are concurrent. Daniel

1968 Vietnam National Olympiad, 2

$L$ and $M$ are two parallel lines a distance $d$ apart. Given $r$ and $x$, construct a triangle $ABC$, with $A$ on $L$, and $B$ and $C$ on $M$, such that the inradius is $r$, and angle $A = x$. Calculate angles $B$ and $C$ in terms of $d$, $r$ and $x$. If the incircle touches the side $BC$ at $D$, find a relation between $BD$ and $DC$

2011 Germany Team Selection Test, 2

Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$ [i]Proposed by Nazar Serdyuk, Ukraine[/i]

2009 China Team Selection Test, 1

Let $ ABC$ be a triangle. Point $ D$ lies on its sideline $ BC$ such that $ \angle CAD \equal{} \angle CBA.$ Circle $ (O)$ passing through $ B,D$ intersects $ AB,AD$ at $ E,F$, respectively. $ BF$ meets $ DE$ at $ G$.Denote by$ M$ the midpoint of $ AG.$ Show that $ CM\perp AO.$