Found problems: 1001
2019 AMC 10, 5
Triangle $ABC$ lies in the first quadrant. Points $A$, $B$, and $C$ are reflected across the line $y=x$ to points $A'$, $B'$, and $C'$, respectively. Assume that none of the vertices of the triangle lie on the line $y=x$. Which of the following statements is [u][i]not[/i][/u] always true?
$(A)$ Triangle $A'B'C'$ lies in the first quadrant.
$(B)$ Triangles $ABC$ and $A'B'C'$ have the same area.
$(C)$ The slope of line $AA'$ is $-1$.
$(D)$ The slopes of lines $AA'$ and $CC'$ are the same.
$(E)$ Lines $AB$ and $A'B'$ are perpendicular to each other.
2010 Stars Of Mathematics, 2
Let $ABCD$ be a square and let the points $M$ on $BC$, $N$ on $CD$, $P$ on $DA$, be such that $\angle (AB,AM)=x,\angle (BC,MN)=2x,\angle (CD,NP)=3x$.
1) Show that for any $0\le x\le 22.5$, such a configuration uniquely exists, and that $P$ ranges over the whole segment $DA$;
2) Determine the number of angles $0\le x\le 22.5$ for which$\angle (DA,PB)=4x$.
(Dan Schwarz)
2014 Mexico National Olympiad, 4
Problem 4
Let $ABCD$ be a rectangle with diagonals $AC$ and $BD$. Let $E$ be the intersection of the bisector of $\angle CAD$ with segment $CD$, $F$ on $CD$ such that $E$ is midpoint of $DF$, and $G$ on $BC$ such that $BG = AC$ (with $C$ between $B$ and $G$). Prove that the circumference through $D$, $F$ and $G$ is tangent to $BG$.
2017 All-Russian Olympiad, 8
In a non-isosceles triangle $ABC$,$O$ and $I$ are circumcenter and incenter,respectively.$B^\prime$ is reflection of $B$ with respect to $OI$ and lies inside the angle $ABI$.Prove that the tangents to circumcirle of $\triangle BB^\prime I$ at $B^\prime$,$I$ intersect on $AC$. (A. Kuznetsov)
2025 ISI Entrance UGB, 7
Consider a ball that moves inside an acute-angled triangle along a straight line, unit it hits the boundary, which is when it changes direction according to the mirror law, just like a ray of light (angle of incidence = angle of reflection). Prove that there exists a triangular periodic path for the ball, as pictured below.
[asy]
size(10cm);
pen thickbrown = rgb(0.6, 0.2, 0);
pen thickdark = rgb(0.2, 0, 0);
pen dashedarrow = linetype("6 6");
pair A = (-1.14, 4.36), B = (-4.46, -1.28), C = (3.32, -2.78);
pair D = (-1.479, -1.855), E = (0.727, 1.372), F = (-3.014, 1.176);
draw(A--B--C--cycle, thickbrown);
draw(A--B, thickdark);
draw(B--C, thickdark);
draw(C--A, thickdark);
draw(D--F, dashedarrow, EndArrow(6));
draw(F--E, dashedarrow, EndArrow(6));
draw(E--D, dashedarrow, EndArrow(6));
dot(A); label("$A$", A, N);
dot(B); label("$B$", B, dir(180));
dot(C); label("$C$", C, dir(330));
dot(D); label("$D$", D, S);
dot(E); label("$E$", E, NE);
dot(F); label("$F$", F, W);
[/asy]
1989 Canada National Olympiad, 2
Let $ ABC$ be a right angled triangle of area 1. Let $ A'B'C'$ be the points obtained by reflecting $ A,B,C$ respectively, in their opposite sides. Find the area of $ \triangle A'B'C'.$
2005 MOP Homework, 2
Let $ABC$ be a triangle, and let $D$ be a point on side $AB$. Circle $\omega_1$ passes through $A$ and $D$ and is tangent to line $AC$ at $A$. Circle $\omega_2$ passes through $B$ and $D$ and is tangent to line $BC$ at $B$. Circles $\omega_1$ and $\omega_2$ meet at $D$ and $E$. Point $F$ is the reflection of $C$ across the perpendicular bisector of $AB$. Prove that points $D$, $E$, and $F$ are collinear.
2011 Brazil Team Selection Test, 3
Let $ABC$ be an acute triangle with $\angle BAC=30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line $AC$ at $B_1$ and $B_2$, respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line $AB$ at $C_1$ and $C_2$, respectively. Suppose that the circles with diameters $B_1B_2$ and $C_1C_2$ meet inside the triangle $ABC$ at point $P$. Prove that $\angle BPC=90^{\circ}$ .
2007 Iran Team Selection Test, 3
Let $\omega$ be incircle of $ABC$. $P$ and $Q$ are on $AB$ and $AC$, such that $PQ$ is parallel to $BC$ and is tangent to $\omega$. $AB,AC$ touch $\omega$ at $F,E$. Prove that if $M$ is midpoint of $PQ$, and $T$ is intersection point of $EF$ and $BC$, then $TM$ is tangent to $\omega$.
[i]By Ali Khezeli[/i]
2014 PUMaC Algebra A, 1
On the number line, consider the point $x$ that corresponds to the value $10$. Consider $24$ distinct integer points $y_1$, $y_2$, $\ldots$, $y_{24}$ on the number line such that for all $k$ such that $1\leq k\leq 12$, we have that $y_{2k-1}$ is the reflection of $y_{2k}$ across $x$. Find the minimum possible value of \[\textstyle\sum_{n=1}^{24}(|y_n-1|+|y_n+1|).\]
2009 South africa National Olympiad, 2
Let $ABCD$ be a rectangle and $E$ the reflection of $A$ with respect to the diagonal $BD$. If $EB = EC$, what is the ratio $\frac{AD}{AB}$ ?
2008 Germany Team Selection Test, 3
Denote by $ M$ midpoint of side $ BC$ in an isosceles triangle $ \triangle ABC$ with $ AC = AB$. Take a point $ X$ on a smaller arc $ \overarc{MA}$ of circumcircle of triangle $ \triangle ABM$. Denote by $ T$ point inside of angle $ BMA$ such that $ \angle TMX = 90$ and $ TX = BX$.
Prove that $ \angle MTB - \angle CTM$ does not depend on choice of $ X$.
[i]Author: Farzan Barekat, Canada[/i]
2010 Contests, 2
Let $ABC$ be an acute triangle, $H$ its orthocentre, $D$ a point on the side $[BC]$, and $P$ a point such that $ADPH$ is a parallelogram.
Show that $\angle BPC > \angle BAC$.
2016 APMO, 1
We say that a triangle $ABC$ is great if the following holds: for any point $D$ on the side $BC$, if $P$ and $Q$ are the feet of the perpendiculars from $D$ to the lines $AB$ and $AC$, respectively, then the reflection of $D$ in the line $PQ$ lies on the circumcircle of the triangle $ABC$. Prove that triangle $ABC$ is great if and only if $\angle A = 90^{\circ}$ and $AB = AC$.
[i]Senior Problems Committee of the Australian Mathematical Olympiad Committee[/i]
2008 Federal Competition For Advanced Students, Part 2, 3
We are given a line $ g$ with four successive points $ P$, $ Q$, $ R$, $ S$, reading from left to right. Describe a straightedge and compass construction yielding a square $ ABCD$ such that $ P$ lies on the line $ AD$, $ Q$ on the line $ BC$, $ R$ on the line $ AB$ and $ S$ on the line $ CD$.
2002 India IMO Training Camp, 18
Consider the square grid with $A=(0,0)$ and $C=(n,n)$ at its diagonal ends. Paths from $A$ to $C$ are composed of moves one unit to the right or one unit up. Let $C_n$ (n-th catalan number) be the number of paths from $A$ to $C$ which stay on or below the diagonal $AC$. Show that the number of paths from $A$ to $C$ which cross $AC$ from below at most twice is equal to $C_{n+2}-2C_{n+1}+C_n$
2010 All-Russian Olympiad, 3
Lines tangent to circle $O$ in points $A$ and $B$, intersect in point $P$. Point $Z$ is the center of $O$. On the minor arc $AB$, point $C$ is chosen not on the midpoint of the arc. Lines $AC$ and $PB$ intersect at point $D$. Lines $BC$ and $AP$ intersect at point $E$. Prove that the circumcentres of triangles $ACE$, $BCD$, and $PCZ$ are collinear.
2022 China Second Round A2, 2
$A,B,C,D,E$ are points on a circle $\omega$, satisfying $AB=BD$, $BC=CE$. $AC$ meets $BE$ at $P$. $Q$ is on $DE$ such that $BE//AQ$. Suppose $\odot(APQ)$ intersects $\omega$ again at $T$. $A'$ is the reflection of $A$ wrt $BC$. Prove that $A'BPT$ lies on the same circle.
2008 Balkan MO Shortlist, C3
Let $ n$ be a positive integer. Consider a rectangle $ (90n\plus{}1)\times(90n\plus{}5)$ consisting of unit squares. Let $ S$ be the set of the vertices of these squares. Prove that the number of distinct lines passing through at least two points of $ S$ is divisible by $ 4$.
2013 Harvard-MIT Mathematics Tournament, 31
Let $ABCD$ be a quadrilateral inscribed in a unit circle with center $O$. Suppose that $\angle AOB = \angle COD = 135^\circ$, $BC=1$. Let $B^\prime$ and $C^\prime$ be the reflections of $A$ across $BO$ and $CO$ respectively. Let $H_1$ and $H_2$ be the orthocenters of $AB^\prime C^\prime$ and $BCD$, respectively. If $M$ is the midpoint of $OH_1$, and $O^\prime$ is the reflection of $O$ about the midpoint of $MH_2$, compute $OO^\prime$.
2007 Kyiv Mathematical Festival, 4
The point $D$ at the side $AB$ of triangle $ABC$ is given. Construct points $E,F$ at sides $BC, AC$ respectively such that the midpoints of $DE$ and $DF$ are collinear with $B$ and the midpoints of $DE$ and $EF$ are collinear with $C.$
2016 India PRMO, 6
Suppose a circle $C$ of radius $\sqrt2$ touches the $Y$ -axis at the origin $(0, 0)$. A ray of light $L$, parallel to the $X$-axis, reflects on a point $P$ on the circumference of $C$, and after reflection, the reflected ray $L'$ becomes parallel to the $Y$ -axis. Find the distance between the ray $L$ and the $X$-axis.
2013 Online Math Open Problems, 26
Let $ABC$ be a triangle with $AB=13$, $AC=25$, and $\tan A = \frac{3}{4}$. Denote the reflections of $B,C$ across $\overline{AC},\overline{AB}$ by $D,E$, respectively, and let $O$ be the circumcenter of triangle $ABC$. Let $P$ be a point such that $\triangle DPO\sim\triangle PEO$, and let $X$ and $Y$ be the midpoints of the major and minor arcs $\widehat{BC}$ of the circumcircle of triangle $ABC$. Find $PX \cdot PY$.
[i]Proposed by Michael Kural[/i]
1997 Flanders Math Olympiad, 4
Thirteen birds arrive and sit down in a plane. It's known that from each 5-tuple of birds, at least four birds sit on a circle. Determine the greatest $M \in \{1, 2, ..., 13\}$ such that from these 13 birds, at least $M$ birds sit on a circle, but not necessarily $M + 1$ birds sit on a circle. (prove that your $M$ is optimal)
1996 Bundeswettbewerb Mathematik, 3
Let $ABC$ be a triangle, and erect three rectangles $ABB_1A_2$, $BCC_1B_2$, $CAA_1C_2$ externally on its sides $AB$, $BC$, $CA$, respectively. Prove that the perpendicular bisectors of the segments $A_1A_2$, $B_1B_2$, $C_1C_2$ are concurrent.