This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

1995 Turkey MO (2nd round), 2

Let $ABC$ be an acute triangle and let $k_{1},k_{2},k_{3}$ be the circles with diameters $BC,CA,AB$, respectively. Let $K$ be the radical center of these circles. Segments $AK,CK,BK$ meet $k_{1},k_{2},k_{3}$ again at $D,E,F$, respectively. If the areas of triangles $ABC,DBC,ECA,FAB$ are $u,x,y,z$, respectively, prove that \[u^{2}=x^{2}+y^{2}+z^{2}.\]

1986 Iran MO (2nd round), 1

$O$ is a point in the plane. Let $O'$ be an arbitrary point on the axis $Ox$ of the plane and let $M$ be an arbitrary point. Rotate $M$, $90^\circ$ clockwise around $O$ to get the point $M'$ and rotate $M$, $90^\circ$ anticlockwise around $O'$ to get the point $M''.$ Prove that the midpoint of the segment $MM''$ is a fixed point.

2011 Belarus Team Selection Test, 3

Let $ABC$ be an acute triangle with $D, E, F$ the feet of the altitudes lying on $BC, CA, AB$ respectively. One of the intersection points of the line $EF$ and the circumcircle is $P.$ The lines $BP$ and $DF$ meet at point $Q.$ Prove that $AP = AQ.$ [i]Proposed by Christopher Bradley, United Kingdom[/i]

2024 Israel TST, P2

Triangle $ABC$ is inscribed in circle $\Omega$ with center $O$. The incircle of $ABC$ is tangent to $BC$, $AC$, $AB$ at $D$, $E$, $F$ respectively, and its center is $I$. The reflection of the tangent line to $\Omega$ at $A$ with respect to $EF$ will be denoted $\ell_A$. We similarly define $\ell_B$, $\ell_C$. Show that the orthocenter of the triangle with sides $\ell_A$, $\ell_B$, $\ell_C$ lies on $OI$.

1991 Romania Team Selection Test, 5

In a triangle $A_1A_2A_3$, the excribed circles corresponding to sides $A_2A_3$, $A_3A_1$, $A_1A_2$ touch these sides at $T_1$, $T_2$, $T_3$, respectively. If $H_1$, $H_2$, $H_3$ are the orthocenters of triangles $A_1T_2T_3$, $A_2T_3T_1$, $A_3T_1T_2$, respectively, prove that lines $H_1T_1$, $H_2T_2$, $H_3T_3$ are concurrent.

1998 Tournament Of Towns, 5

A circle with center $O$ is inscribed in an angle. Let $A$ be the reflection of $O$ across one side of the angle. Tangents to the circle from $A$ intersect the other side of the angle at points $B$ and $C$. Prove that the circumcenter of triangle $ABC$ lies on the bisector of the original angle. (I.Sharygin)

2010 Contests, 4

Let $ABC$ be an acute angled triangle satisfying the conditions $AB>BC$ and $AC>BC$. Denote by $O$ and $H$ the circumcentre and orthocentre, respectively, of the triangle $ABC.$ Suppose that the circumcircle of the triangle $AHC$ intersects the line $AB$ at $M$ different from $A$, and the circumcircle of the triangle $AHB$ intersects the line $AC$ at $N$ different from $A.$ Prove that the circumcentre of the triangle $MNH$ lies on the line $OH$.

2011 Regional Competition For Advanced Students, 3

Let $k$ be a circle centered at $M$ and let $t$ be a tangentline to $k$ through some point $T\in k$. Let $P$ be a point on $t$ and let $g\neq t$ be a line through $P$ intersecting $k$ at $U$ and $V$. Let $S$ be the point on $k$ bisecting the arc $UV$ not containing $T$ and let $Q$ be the the image of $P$ under a reflection over $ST$. Prove that $Q$, $T$, $U$ and $V$ are vertices of a trapezoid.

2012 IMAR Test, 3

Given a triangle $ABC$, let $D$ be a point different from $A$ on the external bisectrix $\ell$ of the angle $BAC$, and let $E$ be an interior point of the segment $AD$. Reflect $\ell$ in the internal bisectrices of the angles $BDC$ and $BEC$ to obtain two lines that meet at some point $F$. Show that the angles $ABD$ and $EBF$ are congruent.

2015 Costa Rica - Final Round, 6

Let $\vartriangle ABC$ be a triangle with circumcenter $O$. Let $ P$ and $Q$ be internal points on the sides $AB$ and $AC$ respectively such that $\angle POB = \angle ABC$ and $\angle QOC = \angle ACB$. Show that the reflection of line $BC$ over line $PQ$ is tangent to the circumcircle of triangle $\vartriangle APQ$.

2012 ELMO Problems, 5

Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ and $E$ be points on side $BC$ such that $BD=CE$ and $D$ lies between $B$ and $E$. Suppose there exists a point $P$ inside $ABC$ such that $PD\parallel AE$ and $\angle PAB=\angle EAC$. Prove that $\angle PBA=\angle PCA$. [i]Calvin Deng.[/i]

2001 Stanford Mathematics Tournament, 7

The median to a 10 cm side of a triangle has length 9 cm and is perpendicular to a second median of the triangle. Find the exact value in centimeters of the length of the third median.

2002 AIME Problems, 11

Let $ABCD$ and $BCFG$ be two faces of a cube with $AB=12.$ A beam of light emanates from vertex $A$ and reflects off face $BCFG$ at point $P,$ which is 7 units from $\overline{BG}$ and 5 units from $\overline{BC}.$ The beam continues to be reflected off the faces of the cube. The length of the light path from the time it leaves point $A$ until it next reaches a vertex of the cube is given by $m\sqrt{n},$ where $m$ and $n$ are integers and $n$ is not divisible by the square of any prime. Find $m+n.$

2009 China Team Selection Test, 1

Let $ ABC$ be a triangle. Point $ D$ lies on its sideline $ BC$ such that $ \angle CAD \equal{} \angle CBA.$ Circle $ (O)$ passing through $ B,D$ intersects $ AB,AD$ at $ E,F$, respectively. $ BF$ meets $ DE$ at $ G$.Denote by$ M$ the midpoint of $ AG.$ Show that $ CM\perp AO.$

Durer Math Competition CD Finals - geometry, 2009.C3

Dürer's $n \times m$ garden is surgically divided into $n \times m$ unit squares, and in the middle of one of these squares, he planted his favourite petunia. Dürer's gardener struggles with a mole, trying to drive him out of the magnificent garden, so he builds an underground wall on the edge of the garden. The only problem is that the mole managed to stay inside the walls.. When the mole meets a wall, it changes it's direction as if it was "reflected", that is, proceeding his route in the direction that includes the same angle with the wall as his direction before. The mole starts beneath the petunia, in a direction that includes a $45^o$ angle with the walls. Is it possible for the mole to cross the petunia in a direction perpendicular to it's original direction? (Think in terms of $n,m$.)

2014 CentroAmerican, 2

Points $A$, $B$, $C$ and $D$ are chosen on a line in that order, with $AB$ and $CD$ greater than $BC$. Equilateral triangles $APB$, $BCQ$ and $CDR$ are constructed so that $P$, $Q$ and $R$ are on the same side with respect to $AD$. If $\angle PQR=120^\circ$, show that \[\frac{1}{AB}+\frac{1}{CD}=\frac{1}{BC}.\]

2017 Taiwan TST Round 1, 2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2000 All-Russian Olympiad, 3

In an acute scalene triangle $ABC$ the bisector of the acute angle between the altitudes $AA_1$ and $CC_1$ meets the sides $AB$ and $BC$ at $P$ and $Q$ respectively. The bisector of the angle $B$ intersects the segment joining the orthocenter of $ABC$ and the midpoint of $AC$ at point $R$. Prove that $P$, $B$, $Q$, $R$ lie on a circle.

2009 Iran MO (3rd Round), 1

1-Let $ \triangle ABC$ be a triangle and $ (O)$ its circumcircle. $ D$ is the midpoint of arc $ BC$ which doesn't contain $ A$. We draw a circle $ W$ that is tangent internally to $ (O)$ at $ D$ and tangent to $ BC$.We draw the tangent $ AT$ from $ A$ to circle $ W$.$ P$ is taken on $ AB$ such that $ AP \equal{} AT$.$ P$ and $ T$ are at the same side wrt $ A$.PROVE $ \angle APD \equal{} 90^\circ$.

2022 Sharygin Geometry Olympiad, 18

The products of the opposite sidelengths of a cyclic quadrilateral $ABCD$ are equal. Let $B'$ be the reflection of $B$ about $AC$. Prove that the circle passing through $A,B', D$ touches $AC$

2010 Contests, 2

Given a triangle $ABC$, let $A',B',C'$ be the perpendicular feet dropped from the centroid $G$ of the triangle $ABC$ onto the sides $BC,CA,AB$ respectively. Reflect $A',B',C'$ through $G$ to $A'',B'',C''$ respectively. Prove that the lines $AA'',BB'',CC''$ are concurrent.

2016 Bangladesh Mathematical Olympiad, 8

Triangle $ABC$ is inscribed in circle $\omega$ with $AB = 5$, $BC = 7$, and $AC = 3$. The bisector of angle $A$ meets side $BC$ at $D$ and circle $\omega$ at a second point $E$. Let $\gamma$ be the circle with diameter $DE$. Circles $\omega$ and $\gamma$ meet at $E$ and a second point $F$. Then $AF^2 = \frac mn$, where m and n are relatively prime positive integers. Find $m + n$.

2004 IMO Shortlist, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

2013 Serbia National Math Olympiad, 3

Let $M$, $N$ and $P$ be midpoints of sides $BC, AC$ and $AB$, respectively, and let $O$ be circumcenter of acute-angled triangle $ABC$. Circumcircles of triangles $BOC$ and $MNP$ intersect at two different points $X$ and $Y$ inside of triangle $ABC$. Prove that \[\angle BAX=\angle CAY.\]

2004 China Team Selection Test, 2

Two equal-radii circles with centres $ O_1$ and $ O_2$ intersect each other at $ P$ and $ Q$, $ O$ is the midpoint of the common chord $ PQ$. Two lines $ AB$ and $ CD$ are drawn through $ P$ ( $ AB$ and $ CD$ are not coincide with $ PQ$ ) such that $ A$ and $ C$ lie on circle $ O_1$ and $ B$ and $ D$ lie on circle $ O_2$. $ M$ and $ N$ are the mipoints of segments $ AD$ and $ BC$ respectively. Knowing that $ O_1$ and $ O_2$ are not in the common part of the two circles, and $ M$, $ N$ are not coincide with $ O$. Prove that $ M$, $ N$, $ O$ are collinear.