Found problems: 1001
Indonesia MO Shortlist - geometry, g1
The inscribed circle of the $ABC$ triangle has center $I$ and touches to $BC$ at $X$. Suppose the $AI$ and $BC$ lines intersect at $L$, and $D$ is the reflection of $L$ wrt $X$. Points $E$ and $F$ respectively are the result of a reflection of $D$ wrt to lines $CI$ and $BI$ respectively. Show that quadrilateral $BCEF$ is cyclic .
2009 Sharygin Geometry Olympiad, 20
Suppose $ H$ and $ O$ are the orthocenter and the circumcenter of acute triangle $ ABC$; $ AA_1$, $ BB_1$ and $ CC_1$ are the altitudes of the triangle. Point $ C_2$ is the reflection of $ C$ in $ A_1B_1$. Prove that $ H$, $ O$, $ C_1$ and $ C_2$ are concyclic.
2006 IMO Shortlist, 7
In a triangle $ ABC$, let $ M_{a}$, $ M_{b}$, $ M_{c}$ be the midpoints of the sides $ BC$, $ CA$, $ AB$, respectively, and $ T_{a}$, $ T_{b}$, $ T_{c}$ be the midpoints of the arcs $ BC$, $ CA$, $ AB$ of the circumcircle of $ ABC$, not containing the vertices $ A$, $ B$, $ C$, respectively. For $ i \in \left\{a, b, c\right\}$, let $ w_{i}$ be the circle with $ M_{i}T_{i}$ as diameter. Let $ p_{i}$ be the common external common tangent to the circles $ w_{j}$ and $ w_{k}$ (for all $ \left\{i, j, k\right\}= \left\{a, b, c\right\}$) such that $ w_{i}$ lies on the opposite side of $ p_{i}$ than $ w_{j}$ and $ w_{k}$ do.
Prove that the lines $ p_{a}$, $ p_{b}$, $ p_{c}$ form a triangle similar to $ ABC$ and find the ratio of similitude.
[i]Proposed by Tomas Jurik, Slovakia[/i]
1995 Italy TST, 4
In a triangle $ABC$, $P$ and $Q$ are the feet of the altitudes from $B$ and $A$ respectively. Find the locus of the circumcentre of triangle $PQC$, when point $C$ varies (with $A$ and $B$ fixed) in such a way that $\angle ACB$ is equal to $60^{\circ}$.
2007 USA Team Selection Test, 5
Triangle $ ABC$ is inscribed in circle $ \omega$. The tangent lines to $ \omega$ at $ B$ and $ C$ meet at $ T$. Point $ S$ lies on ray $ BC$ such that $ AS \perp AT$. Points $ B_1$ and $ C_1$ lie on ray $ ST$ (with $ C_1$ in between $ B_1$ and $ S$) such that $ B_1T \equal{} BT \equal{} C_1T$. Prove that triangles $ ABC$ and $ AB_1C_1$ are similar to each other.
2016 India Regional Mathematical Olympiad, 5
Let $ABC$ be a right angled triangle with $\angle B=90^{\circ}$. Let $AD$ be the bisector of angle $A$ with $D$ on $BC$ . Let the circumcircle of triangle $ACD$ intersect $AB$ again at $E$; and let the circumcircle of triangle $ABD$ intersect $AC$ again at $F$ . Let $K$ be the reflection of $E$ in the line $BC$ . Prove that $FK = BC$.
2014 NIMO Problems, 3
In triangle $ABC$, we have $AB=AC=20$ and $BC=14$. Consider points $M$ on $\overline{AB}$ and $N$ on $\overline{AC}$. If the minimum value of the sum $BN + MN + MC$ is $x$, compute $100x$.
[i]Proposed by Lewis Chen[/i]
2009 Vietnam Team Selection Test, 2
Let a circle $ (O)$ with diameter $ AB$. A point $ M$ move inside $ (O)$. Internal bisector of $ \widehat{AMB}$ cut $ (O)$ at $ N$, external bisector of $ \widehat{AMB}$ cut $ NA,NB$ at $ P,Q$. $ AM,BM$ cut circle with diameter $ NQ,NP$ at $ R,S$.
Prove that: median from $ N$ of triangle $ NRS$ pass over a fix point.
1995 IMO Shortlist, 2
Let $ A, B$ and $ C$ be non-collinear points. Prove that there is a unique point $ X$ in the plane of $ ABC$ such that \[ XA^2 \plus{} XB^2 \plus{} AB^2 \equal{} XB^2 \plus{} XC^2 \plus{} BC^2 \equal{} XC^2 \plus{} XA^2 \plus{} CA^2.\]
2011 China Team Selection Test, 1
Let $H$ be the orthocenter of an acute trangle $ABC$ with circumcircle $\Gamma$. Let $P$ be a point on the arc $BC$ (not containing $A$) of $\Gamma$, and let $M$ be a point on the arc $CA$ (not containing $B$) of $\Gamma$ such that $H$ lies on the segment $PM$. Let $K$ be another point on $\Gamma$ such that $KM$ is parallel to the Simson line of $P$ with respect to triangle $ABC$. Let $Q$ be another point on $\Gamma$ such that $PQ \parallel BC$. Segments $BC$ and $KQ$ intersect at a point $J$. Prove that $\triangle KJM$ is an isosceles triangle.
2013 Sharygin Geometry Olympiad, 9
Let $T_1$ and $T_2$ be the points of tangency of the excircles of a triangle $ABC$ with its sides $BC$ and $AC$ respectively. It is known that the reflection of the incenter of $ABC$ across the midpoint of $AB$ lies on the circumcircle of triangle $CT_1T_2$. Find $\angle BCA$.
2009 Harvard-MIT Mathematics Tournament, 3
A rectangular piece of paper with side lengths 5 by 8 is folded along the dashed lines shown below, so that the folded flaps just touch at the corners as shown by the dotted lines. Find the area of the resulting trapezoid.
[asy]
size(150);
defaultpen(linewidth(0.8));
draw(origin--(8,0)--(8,5)--(0,5)--cycle,linewidth(1));
draw(origin--(8/3,5)^^(16/3,5)--(8,0),linetype("4 4"));
draw(origin--(4,3)--(8,0)^^(8/3,5)--(4,3)--(16/3,5),linetype("0 4"));
label("$5$",(0,5/2),W);
label("$8$",(4,0),S);
[/asy]
2006 Polish MO Finals, 3
Let $ABCDEF$ be a convex hexagon satisfying $AC=DF$, $CE=FB$ and $EA=BD$. Prove that the lines connecting the midpoints of opposite sides of the hexagon $ABCDEF$ intersect in one point.
Denmark (Mohr) - geometry, 1997.3
About pentagon $ABCDE$ is known that angle $A$ and angle $C$ are right and that the sides $| AB | = 4$, $| BC | = 5$, $| CD | = 10$, $| DE | = 6$. Furthermore, the point $C'$ that appears by mirroring $C$ in the line $BD$, lies on the line segment $AE$. Find angle $E$.
2007 China Girls Math Olympiad, 5
Point $D$ lies inside triangle $ABC$ such that $\angle DAC = \angle DCA = 30^{\circ}$ and $\angle DBA = 60^{\circ}$. Point $E$ is the midpoint of segment $BC$. Point $F$ lies on segment $AC$ with $AF = 2FC$. Prove that $DE \perp EF$.
1993 IberoAmerican, 2
Show that for every convex polygon whose area is less than or equal to $1$, there exists a parallelogram with area $2$ containing the polygon.
2010 India IMO Training Camp, 7
Let $ABCD$ be a cyclic quadrilaterla and let $E$ be the point of intersection of its diagonals $AC$ and $BD$. Suppose $AD$ and $BC$ meet in $F$. Let the midpoints of $AB$ and $CD$ be $G$ and $H$ respectively. If $\Gamma $ is the circumcircle of triangle $EGH$, prove that $FE$ is tangent to $\Gamma $.
2010 Contests, 2
Let $ABC$ be an acute triangle with orthocentre $H$, and let $M$ be the midpoint of $AC$. The point $C_1$ on $AB$ is such that $CC_1$ is an altitude of the triangle $ABC$. Let $H_1$ be the reflection of $H$ in $AB$. The orthogonal projections of $C_1$ onto the lines $AH_1$, $AC$ and $BC$ are $P$, $Q$ and $R$, respectively. Let $M_1$ be the point such that the circumcentre of triangle $PQR$ is the midpoint of the segment $MM_1$.
Prove that $M_1$ lies on the segment $BH_1$.
1985 Federal Competition For Advanced Students, P2, 3
A line meets the lines containing sides $ BC,CA,AB$ of a triangle $ ABC$ at $ A_1,B_1,C_1,$ respectively. Points $ A_2,B_2,C_2$ are symmetric to $ A_1,B_1,C_1$ with respect to the midpoints of $ BC,CA,AB,$ respectively. Prove that $ A_2,B_2,$ and $ C_2$ are collinear.
1948 Moscow Mathematical Olympiad, 152
a) Two legs of an angle $\alpha$ on a plane are mirrors. Prove that after several reflections in the mirrors any ray leaves in the direction opposite the one from which it came if and only if $\alpha = \frac{90^o}{n}$ for an integer $n$. Find the number of reflections.
b) Given three planar mirrors in space forming an octant (trihedral angle with right planar angles), prove that any ray of light coming into this mirrored octant leaves it, after several reflections in the mirrors, in the direction opposite to the one from which it came. Find the number of reflections.
1998 Turkey MO (2nd round), 2
Variable points $M$ and $N$ are considered on the arms $\left[ OX \right.$ and $\left[ OY \right.$ , respectively, of an angle $XOY$ so that $\left| OM \right|+\left| ON \right|$ is constant. Determine the locus of the midpoint of $\left[ MN \right]$.
2008 AIME Problems, 13
A regular hexagon with center at the origin in the complex plane has opposite pairs of sides one unit apart. One pair of sides is parallel to the imaginary axis. Let $ R$ be the region outside the hexagon, and let $ S\equal{}\{\frac{1}{z}|z\in R\}$. Then the area of $ S$ has the form $ a\pi\plus{}\sqrt{b}$, where $ a$ and $ b$ are positive integers. Find $ a\plus{}b$.
KoMaL A Problems 2017/2018, A. 705
Triangle $ABC$ has orthocenter $H$. Let $D$ be a point distinct from the vertices on the circumcircle of $ABC$. Suppose that circle $BHD$ meets $AB$ at $P\ne B$, and circle $CHD$ meets $AC$ at $Q\ne C$. Prove that as $D$ moves on the circumcircle, the reflection of $D$ across line $PQ$ also moves on a fixed circle.
[i]Michael Ren[/i]
2020 Thailand TSTST, 3
Let $ABC$ be an acute triangle and $\Gamma$ be its circumcircle. Line $\ell$ is tangent to $\Gamma$ at $A$ and let $D$ and $E$ be distinct points on $\ell$ such that $AD = AE$. Suppose that $B$ and $D$ lie on the same side of line $AC$. The circumcircle $\Omega_1$ of $\vartriangle ABD$ meets $AC$ again at $F$. The circumcircle $\Omega_2$ of $\vartriangle ACE$ meets $AB$ again at $G$. The common chord of $\Omega_1$ and $\Omega_2$ meets $\Gamma$ again at $H$. Let $K$ be the reflection of $H$ across line $BC$ and let $L$ be the intersection of $BF$ and $CG$. Prove that $A, K$ and $L$ are collinear.
2005 AMC 8, 21
How many distinct triangles can be drawn using three of the dots below as vertices?
[asy]dot(origin^^(1,0)^^(2,0)^^(0,1)^^(1,1)^^(2,1));[/asy]
$ \textbf{(A)}\ 9\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ 24 $