This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2006 India IMO Training Camp, 1

Let $ABC$ be a triangle and let $P$ be a point in the plane of $ABC$ that is inside the region of the angle $BAC$ but outside triangle $ABC$. [b](a)[/b] Prove that any two of the following statements imply the third. [list] [b](i)[/b] the circumcentre of triangle $PBC$ lies on the ray $\stackrel{\to}{PA}$. [b](ii)[/b] the circumcentre of triangle $CPA$ lies on the ray $\stackrel{\to}{PB}$. [b](iii)[/b] the circumcentre of triangle $APB$ lies on the ray $\stackrel{\to}{PC}$.[/list] [b](b)[/b] Prove that if the conditions in (a) hold, then the circumcentres of triangles $BPC,CPA$ and $APB$ lie on the circumcircle of triangle $ABC$.

2013 ISI Entrance Examination, 5

Let $AD$ be a diameter of a circle of radius $r,$ and let $B,C$ be points on the circle such that $AB=BC=\frac r2$ and $A\neq C.$ Find the ratio $\frac{CD}{r}.$

2013 ELMO Shortlist, 12

Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$. [i]Proposed by David Stoner[/i]

1989 AMC 8, 11

Which of the five "T-like shapes" would be symmetric to the one shown with respect to the dashed line? [asy] unitsize(48); for (int a=0; a<3; ++a) { fill((2a+1,1)--(2a+.8,1)--(2a+.8,.8)--(2a+1,.8)--cycle,black); } draw((.8,1)--(0,1)--(0,0)--(1,0)--(1,.8)); draw((2.8,1)--(2,1)--(2,0)--(3,0)--(3,.8)); draw((4.8,1)--(4,1)--(4,0)--(5,0)--(5,.8)); draw((.2,.4)--(.6,.8),linewidth(1)); draw((.4,.6)--(.8,.2),linewidth(1)); draw((2.4,.8)--(2.8,.4),linewidth(1)); draw((2.6,.6)--(2.2,.2),linewidth(1)); draw((4.4,.2)--(4.8,.6),linewidth(1)); draw((4.6,.4)--(4.2,.8),linewidth(1)); draw((7,.2)--(7,1)--(6,1)--(6,0)--(6.8,0)); fill((6.8,0)--(7,0)--(7,.2)--(6.8,.2)--cycle,black); draw((6.2,.6)--(6.6,.2),linewidth(1)); draw((6.4,.4)--(6.8,.8),linewidth(1)); draw((8,.8)--(8,0)--(9,0)--(9,1)--(8.2,1)); fill((8,1)--(8,.8)--(8.2,.8)--(8.2,1)--cycle,black); draw((8.4,.8)--(8.8,.8),linewidth(1)); draw((8.6,.8)--(8.6,.2),linewidth(1)); draw((6,1.2)--(6,1.4)); draw((6,1.6)--(6,1.8)); draw((6,2)--(6,2.2)); draw((6,2.4)--(6,2.6)); draw((6.4,2.2)--(6.4,1.4)--(7.4,1.4)--(7.4,2.4)--(6.6,2.4)); fill((6.4,2.4)--(6.4,2.2)--(6.6,2.2)--(6.6,2.4)--cycle,black); draw((6.6,1.8)--(7,2.2),linewidth(1)); draw((6.8,2)--(7.2,1.6),linewidth(1)); label("(A)",(0,1),W); label("(B)",(2,1),W); label("(C)",(4,1),W); label("(D)",(6,1),W); label("(E)",(8,1),W); [/asy]

2010 Contests, 2

Let $ABCD$ be a square and let the points $M$ on $BC$, $N$ on $CD$, $P$ on $DA$, be such that $\angle (AB,AM)=x,\angle (BC,MN)=2x,\angle (CD,NP)=3x$. 1) Show that for any $0\le x\le 22.5$, such a configuration uniquely exists, and that $P$ ranges over the whole segment $DA$; 2) Determine the number of angles $0\le x\le 22.5$ for which$\angle (DA,PB)=4x$. (Dan Schwarz)

2004 AMC 12/AHSME, 9

The point $ (\minus{}3, 2)$ is rotated $ 90^\circ$ clockwise around the origin to point $ B$. Point $ B$ is then reflected over the line $ y \equal{} x$ to point $ C$. What are the coordinates of $ C$? $ \textbf{(A)}\ ( \minus{} 3, \minus{} 2)\qquad \textbf{(B)}\ ( \minus{} 2, \minus{} 3)\qquad \textbf{(C)}\ (2, \minus{} 3)\qquad \textbf{(D)}\ (2,3)\qquad \textbf{(E)}\ (3,2)$

2022 Junior Macedonian Mathematical Olympiad, P3

Let $\triangle ABC$ be an acute triangle with orthocenter $H$. The circle $\Gamma$ with center $H$ and radius $AH$ meets the lines $AB$ and $AC$ at the points $E$ and $F$ respectively. Let $E'$, $F'$ and $H'$ be the reflections of the points $E$, $F$ and $H$ with respect to the line $BC$, respectively. Prove that the points $A$, $E'$, $F'$ and $H'$ lie on a circle. [i]Proposed by Jasna Ilieva[/i]

2012 China Western Mathematical Olympiad, 2

Show that among any $n\geq 3$ vertices of a regular $(2n-1)$-gon we can find $3$ of them forming an isosceles triangle.

2009 Moldova Team Selection Test, 3

[color=darkred]Quadrilateral $ ABCD$ is inscribed in the circle of diameter $ BD$. Point $ A_1$ is reflection of point $ A$ wrt $ BD$ and $ B_1$ is reflection of $ B$ wrt $ AC$. Denote $ \{P\}\equal{}CA_1 \cap BD$ and $ \{Q\}\equal{}DB_1\cap AC$. Prove that $ AC\perp PQ$.[/color]

1999 All-Russian Olympiad, 3

A circle touches sides $DA$, $AB$, $BC$, $CD$ of a quadrilateral $ABCD$ at points $K$, $L$, $M$, $N$, respectively. Let $S_1$, $S_2$, $S_3$, $S_4$ respectively be the incircles of triangles $AKL$, $BLM$, $CMN$, $DNK$. The external common tangents distinct from the sides of $ABCD$ are drawn to $S_1$ and $S_2$, $S_2$ and $S_3$, $S_3$ and $S_4$, $S_4$ and $S_1$. Prove that these four tangents determine a rhombus.

2023 Tuymaada Olympiad, 3

Point $L$ inside triangle $ABC$ is such that $CL = AB$ and $ \angle BAC + \angle BLC = 180^{\circ}$. Point $K$ on the side $AC$ is such that $KL \parallel BC$. Prove that $AB = BK$

Swiss NMO - geometry, 2014.1

The points $A, B, C$ and $D$ lie in this order on the circle $k$. Let $t$ be the tangent at $k$ through $C$ and $s$ the reflection of $AB$ at $AC$. Let $G$ be the intersection of the straight line $AC$ and $BD$ and $H$ the intersection of the straight lines $s$ and $CD$. Show that $GH$ is parallel to $t$.

2012 Brazil Team Selection Test, 4

Let $ ABC $ be an acute triangle. Denote by $ D $ the foot of the perpendicular line drawn from the point $ A $ to the side $ BC $, by $M$ the midpoint of $ BC $, and by $ H $ the orthocenter of $ ABC $. Let $ E $ be the point of intersection of the circumcircle $ \Gamma $ of the triangle $ ABC $ and the half line $ MH $, and $ F $ be the point of intersection (other than $E$) of the line $ ED $ and the circle $ \Gamma $. Prove that $ \tfrac{BF}{CF} = \tfrac{AB}{AC} $ must hold. (Here we denote $XY$ the length of the line segment $XY$.)

1992 Romania Team Selection Test, 3

Let $ABCD$ be a tetrahedron; $B', C', D'$ be the midpoints of the edges $AB, AC, AD$; $G_A, G_B, G_C, G_D$ be the barycentres of the triangles $BCD, ACD, ABD, ABC$, and $G$ be the barycentre of the tetrahedron. Show that $A, G, G_B, G_C, G_D$ are all on a sphere if and only if $A, G, B', C', D'$ are also on a sphere. [i]Dan Brânzei[/i]

2010 Contests, 3

Let $A'\in(BC),$ $B'\in(CA),C'\in(AB)$ be the points of tangency of the excribed circles of triangle $\triangle ABC$ with the sides of $\triangle ABC.$ Let $R'$ be the circumradius of triangle $\triangle A'B'C'.$ Show that \[ R'=\frac{1}{2r}\sqrt{2R\left(2R-h_{a}\right)\left(2R-h_{b}\right)\left(2R-h_{c}\right)}\] where as usual, $R$ is the circumradius of $\triangle ABC,$ r is the inradius of $\triangle ABC,$ and $h_{a},h_{b},h_{c}$ are the lengths of altitudes of $\triangle ABC.$

2008 Hungary-Israel Binational, 3

P and Q are 2 points in the area bounded by 2 rays, e and f, coming out from a point O. Describe how to construct, with a ruler and a compass only, an isosceles triangle ABC, such that his base AB is on the ray e, the point C is on the ray f, P is on AC, and Q on BC.

2011 Tuymaada Olympiad, 2

Circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$, and $M$ is the midpoint of $AB$. Points $S_1$ and $S_2$ lie on the line $AB$ (but not between $A$ and $B$). The tangents drawn from $S_1$ to $\omega_1$ touch it at $X_1$ and $Y_1$, and the tangents drawn from $S_2$ to $\omega_2$ touch it at $X_2$ and $Y_2$. Prove that if the line $X_1X_2$ passes through $M$, then line $Y_1Y_2$ also passes through $M$.

2004 Baltic Way, 19

Let $D$ be the midpoint of the side $BC$ of a triangle $ABC$. Let $M$ be a point on the side $BC$ such that $\angle BAM = \angle DAC$. Further, let $L$ be the second intersection point of the circumcircle of the triangle $CAM$ with the side $AB$, and let $K$ be the second intersection point of the circumcircle of the triangle $BAM$ with the side $AC$. Prove that $KL \parallel BC$.

2011 Kazakhstan National Olympiad, 6

We call a square table of a binary, if at each cell is written a single number 0 or 1. The binary table is called regular if each row and each column exactly two units. Determine the number of regular size tables $n\times n$ ($n> 1$ - given a fixed positive integer). (We can assume that the rows and columns of the tables are numbered: the cases of coincidence in turn, reflect, and so considered different).

2001 Pan African, 2

Let $n$ be a positive integer. A child builds a wall along a line with $n$ identical cubes. He lays the first cube on the line and at each subsequent step, he lays the next cube either on the ground or on the top of another cube, so that it has a common face with the previous one. How many such distinct walls exist?

2014 Dutch IMO TST, 3

Let $H$ be the orthocentre of an acute triangle $ABC$. The line through $A$ perpendicular to $AC$ and the line through $B$ perpendicular to $BC$ intersect in $D$. The circle with centre $C$ through $H$ intersects the circumcircle of triangle $ABC$ in the points $E$ and $F$. Prove that $|DE| = |DF| = |AB|$.

2008 Balkan MO, 3

Let $ n$ be a positive integer. Consider a rectangle $ (90n\plus{}1)\times(90n\plus{}5)$ consisting of unit squares. Let $ S$ be the set of the vertices of these squares. Prove that the number of distinct lines passing through at least two points of $ S$ is divisible by $ 4$.

2005 District Olympiad, 2

Let $ABC$ be a triangle and let $M$ be the midpoint of the side $AB$. Let $BD$ be the interior angle bisector of $\angle ABC$, $D\in AC$. Prove that if $MD \perp BD$ then $AB=3BC$.

2005 Federal Competition For Advanced Students, Part 2, 3

Let $Q$ be a point inside a cube. Prove that there are infinitely many lines $l$ so that $AQ=BQ$ where $A$ and $B$ are the two points of intersection of $l$ and the surface of the cube.

ICMC 5, 4

Let $p$ be a prime number. Find all subsets $S\subseteq\mathbb Z/p\mathbb Z$ such that 1. if $a,b\in S$, then $ab\in S$, and 2. there exists an $r\in S$ such that for all $a\in S$, we have $r-a\in S\cup\{0\}$. [i]Proposed by Harun Khan[/i]