Found problems: 1001
2012 ELMO Shortlist, 6
In $\triangle ABC$, $H$ is the orthocenter, and $AD,BE$ are arbitrary cevians. Let $\omega_1, \omega_2$ denote the circles with diameters $AD$ and $BE$, respectively. $HD,HE$ meet $\omega_1,\omega_2$ again at $F,G$. $DE$ meets $\omega_1,\omega_2$ again at $P_1,P_2$ respectively. $FG$ meets $\omega_1,\omega_2$ again $Q_1,Q_2$ respectively. $P_1H,Q_1H$ meet $\omega_1$ at $R_1,S_1$ respectively. $P_2H,Q_2H$ meet $\omega_2$ at $R_2,S_2$ respectively. Let $P_1Q_1\cap P_2Q_2 = X$, and $R_1S_1\cap R_2S_2=Y$. Prove that $X,Y,H$ are collinear.
[i]Ray Li.[/i]
1964 Miklós Schweitzer, 4
Let $ A_1,A_2,...,A_n$ be the vertices of a closed convex $ n$-gon $ K$ numbered consecutively. Show that at least $ n\minus{}3$
vertices $ A_i$ have the property that the reflection of $ A_i$ with respect to the midpoint of $ A_{i\minus{}1}A_{i\plus{}1}$ is contained in $ K$. (Indices are meant $ \textrm{mod} \;n\ .$)
2017 Junior Balkan Team Selection Tests - Romania, 3
Let $I$ be the incenter of the scalene $\Delta ABC$, such, $AB<AC$, and let $I'$ be the reflection of point $I$ in line $BC$. The angle bisector $AI$ meets $BC$ at $D$ and circumcircle of $\Delta ABC$ at $E$. The line $EI'$ meets the circumcircle at $F$. Prove, that,
$\text{(i) } \frac{AI}{IE}=\frac{ID}{DE}$
$\text{(ii) } IA=IF$
2005 Estonia Team Selection Test, 6
Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$.
Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.
2011 ELMO Shortlist, 2
Let $\omega,\omega_1,\omega_2$ be three mutually tangent circles such that $\omega_1,\omega_2$ are externally tangent at $P$, $\omega_1,\omega$ are internally tangent at $A$, and $\omega,\omega_2$ are internally tangent at $B$. Let $O,O_1,O_2$ be the centers of $\omega,\omega_1,\omega_2$, respectively. Given that $X$ is the foot of the perpendicular from $P$ to $AB$, prove that $\angle{O_1XP}=\angle{O_2XP}$.
[i]David Yang.[/i]
Denmark (Mohr) - geometry, 1997.3
About pentagon $ABCDE$ is known that angle $A$ and angle $C$ are right and that the sides $| AB | = 4$, $| BC | = 5$, $| CD | = 10$, $| DE | = 6$. Furthermore, the point $C'$ that appears by mirroring $C$ in the line $BD$, lies on the line segment $AE$. Find angle $E$.
2017 Sharygin Geometry Olympiad, 3
Let $AD, BE$ and $CF$ be the medians of triangle $ABC$. The points $X$ and $Y$ are the reflections of $F$ about $AD$ and $BE$, respectively. Prove that the circumcircles of triangles $BEX$ and $ADY$ are concentric.
2012 Romanian Master of Mathematics, 6
Let $ABC$ be a triangle and let $I$ and $O$ denote its incentre and circumcentre respectively. Let $\omega_A$ be the circle through $B$ and $C$ which is tangent to the incircle of the triangle $ABC$; the circles $\omega_B$ and $\omega_C$ are defined similarly. The circles $\omega_B$ and $\omega_C$ meet at a point $A'$ distinct from $A$; the points $B'$ and $C'$ are defined similarly. Prove that the lines $AA',BB'$ and $CC'$ are concurrent at a point on the line $IO$.
[i](Russia) Fedor Ivlev[/i]
Estonia Open Senior - geometry, 2018.2.5
Let $A'$ be the result of reflection of vertex $A$ of triangle ABC through line $BC$ and let $B'$ be the result of reflection of vertex $B$ through line $AC$. Given that $\angle BA' C = \angle BB'C$, can the largest angle of triangle $ABC$ be located:
a) At vertex $A$,
b) At vertex $B$,
c) At vertex $C$?
2008 China Western Mathematical Olympiad, 1
Four frogs are positioned at four points on a straight line such that the distance between any two neighbouring points is 1 unit length. Suppose the every frog can jump to its corresponding point of reflection, by taking any one of the other 3 frogs as the reference point. Prove that, there is no such case that the distance between any two neighbouring points, where the frogs stay, are all equal to 2008 unit length.
Taiwan TST 2015 Round 1, 1
Let $ABC$ be a triangle and $M$ be the midpoint of $BC$, and let $AM$ meet the circumcircle of $ABC$ again at $R$. A line passing through $R$ and parallel to $BC$ meet the circumcircle of $ABC$ again at $S$. Let $U$ be the foot from $R$ to $BC$, and $T$ be the reflection of $U$ in $R$. $D$ lies in $BC$ such that $AD$ is an altitude. $N$ is the midpoint of $AD$. Finally let $AS$ and $MN$ meets at $K$. Prove that $AT$ bisector $MK$.
2011 Turkey MO (2nd round), 2
Let $ABC$ be a triangle $D\in[BC]$ (different than $A$ and $B$).$E$ is the midpoint of $[CD]$. $F\in[AC]$ such that $\widehat{FEC}=90$ and $|AF|.|BC|=|AC|.|EC|.$ Circumcircle of $ADC$ intersect $[AB]$ at $G$ different than $A$.Prove that tangent to circumcircle of $AGF$ at $F$ is touch circumcircle of $BGE$ too.
2008 Tuymaada Olympiad, 4
Point $ I_1$ is the reflection of incentre $ I$ of triangle $ ABC$ across the side $ BC$. The circumcircle of $ BCI_1$ intersects the line $ II_1$ again at point $ P$. It is known that $ P$ lies outside the incircle of the triangle $ ABC$. Two tangents drawn from $ P$ to the latter circle touch it at points $ X$ and $ Y$. Prove that the line $ XY$ contains a medial line of the triangle $ ABC$.
[i]Author: L. Emelyanov[/i]
2011 Postal Coaching, 1
Let $I$ be the incentre of a triangle $ABC$ and $\Gamma_a$ be the excircle opposite $A$ touching $BC$ at $D$. If $ID$ meets $\Gamma_a$ again at $S$, prove that $DS$ bisects $\angle BSC$.
2006 Hong Kong TST., 3
In triangle ABC, the altitude, angle bisector and median from C divide the angle C into four equal angles. Find angle B.
2013 Online Math Open Problems, 9
Let $AXYZB$ be a regular pentagon with area $5$ inscribed in a circle with center $O$. Let $Y'$ denote the reflection of $Y$ over $\overline{AB}$ and suppose $C$ is the center of a circle passing through $A$, $Y'$ and $B$. Compute the area of triangle $ABC$.
[i]Proposed by Evan Chen[/i]
2014 AMC 10, 24
The numbers 1, 2, 3, 4, 5 are to be arranged in a circle. An arrangement is [i]bad[/i] if it is not true that for every $n$ from $1$ to $15$ one can find a subset of the numbers that appear consecutively on the circle that sum to $n$. Arrangements that differ only by a rotation or a reflection are considered the same. How many different bad arrangements are there?
$ \textbf {(A) } 1 \qquad \textbf {(B) } 2 \qquad \textbf {(C) } 3 \qquad \textbf {(D) } 4 \qquad \textbf {(E) } 5 $
2014 ELMO Shortlist, 11
Let $ABC$ be a triangle with circumcenter $O$. Let $P$ be a point inside $ABC$, so let the points $D, E, F$ be on $BC, AC, AB$ respectively so that the Miquel point of $DEF$ with respect to $ABC$ is $P$. Let the reflections of $D, E, F$ over the midpoints of the sides that they lie on be $R, S, T$. Let the Miquel point of $RST$ with respect to the triangle $ABC$ be $Q$. Show that $OP = OQ$.
[i]Proposed by Yang Liu[/i]
2006 Poland - Second Round, 2
Point $C$ is a midpoint of $AB$. Circle $o_1$ which passes through $A$ and $C$ intersect circle $o_2$ which passes through $B$ and $C$ in two different points $C$ and $D$. Point $P$ is a midpoint of arc $AD$ of circle $o_1$ which doesn't contain $C$. Point $Q$ is a midpoint of arc $BD$ of circle $o_2$ which doesn't contain $C$. Prove that $PQ \perp CD$.
1968 Dutch Mathematical Olympiad, 4
Given is a triangle $ABC$. A line $\ell$ passes through reflection wrt $BC$ changes into the line $\ell'$, $\ell'$ changes into $\ell''$ through reflection wrt $AC$ and $\ell''$ through reflection wrt $AB$ changes into $\ell'''$. Construct the line $\ell$ given that $\ell'''$ coincides with $\ell$.
1979 IMO Longlists, 30
Let $M$ be a set of points in a plane with at least two elements. Prove that if $M$ has two axes of symmetry $g_1$ and $g_2$ intersecting at an angle $\alpha = q\pi$, where $q$ is irrational, then $M$ must be infinite.
2025 India STEMS Category B, 3
Let $ABC$ be an acute scalene triangle with orthocenter $H$. Let $M$ be the midpoint of $BC$. $N$ is the point on line $AM$ such that $(BMN)$ is tangent to $AB$. Finally, let $H'$ be the reflection of $H$ in $B$. Prove that $\angle ANH'=90^{\circ}$.
[i]Proposed by Malay Mahajan and Siddharth Choppara[/i]
2013 Brazil National Olympiad, 6
The incircle of triangle $ABC$ touches sides $BC, CA$ and $AB$ at points $D, E$ and $F$, respectively. Let $P$ be the intersection of lines $AD$ and $BE$. The reflections of $P$ with respect to $EF, FD$ and $DE$ are $X,Y$ and $Z$, respectively. Prove that lines $AX, BY$ and $CZ$ are concurrent at a point on line $IO$, where $I$ and $O$ are the incenter and circumcenter of triangle $ABC$.
2011 Olympic Revenge, 4
Let $ABCD$ to be a quadrilateral inscribed in a circle $\Gamma$. Let $r$ and $s$ to be the tangents to $\Gamma$ through $B$ and $C$, respectively, $M$ the intersection between the lines $r$ and $AD$ and $N$ the intersection between the lines $s$ and $AD$. After all, let $E$ to be the intersection between the lines $BN$ and $CM$, $F$ the intersection between the lines $AE$ and $BC$ and $L$ the midpoint of $BC$. Prove that the circuncircle of the triangle $DLF$ is tangent to $\Gamma$.
2016 Sharygin Geometry Olympiad, 7
Restore a triangle by one of its vertices, the circumcenter and the Lemoine's point.
[i](The Lemoine's point is the intersection point of the reflections of the medians in the correspondent angle bisectors)[/i]