Found problems: 1001
2013 India IMO Training Camp, 2
In a triangle $ABC$, with $\widehat{A} > 90^\circ$, let $O$ and $H$ denote its circumcenter and orthocenter, respectively. Let $K$ be the reflection of $H$ with respect to $A$. Prove that $K, O$ and $C$ are collinear if and only if $\widehat{A} - \widehat{B} = 90^\circ$.
2012 All-Russian Olympiad, 2
The inscribed circle $\omega$ of the non-isosceles acute-angled triangle $ABC$ touches the side $BC$ at the point $D$. Suppose that $I$ and $O$ are the centres of inscribed circle and circumcircle of triangle $ABC$ respectively. The circumcircle of triangle $ADI$ intersects $AO$ at the points $A$ and $E$. Prove that $AE$ is equal to the radius $r$ of $\omega$.
1971 Polish MO Finals, 2
A pool table has the shape of a triangle whose angles are in a rational ratio. A ball positioned at an interior point of the table is hit by a stick. The ball reflects from the sides of the triangle according to the law of reflection. Prove that the ball will move only along a finite number of segments. (It is assumed that the ball does not reach the vertices of the triangle.)
2003 Turkey Team Selection Test, 5
Let $A$ be a point on a circle with center $O$ and $B$ be the midpoint of $[OA]$. Let $C$ and $D$ be points on the circle such that they lie on the same side of the line $OA$ and $\widehat{CBO} = \widehat{DBA}$. Show that the reflection of the midpoint of $[CD]$ over $B$ lies on the circle.
2010 AMC 12/AHSME, 17
The entries in a $ 3\times3$ array include all the digits from 1 through 9, arranged so that the entries in every row and column are in increasing order. How many such arrays are there?
$ \textbf{(A)}\ 18\qquad\textbf{(B)}\ 24\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 42\qquad\textbf{(E)}\ 60$
2023 Taiwan TST Round 1, G
Let $\Omega$ be the circumcircle of an isosceles trapezoid $ABCD$, in which $AD$ is parallel to $BC$. Let $X$ be the reflection point of $D$ with respect to $BC$. Point $Q$ is on the arc $BC$ of $\Omega$ that does not contain $A$. Let $P$ be the intersection of $DQ$ and $BC$. A point $E$ satisfies that $EQ$ is parallel to $PX$, and $EQ$ bisects $\angle BEC$. Prove that $EQ$ also bisects $\angle AEP$.
[i]Proposed by Li4.[/i]
2003 Iran MO (3rd Round), 13
here is the most difficult and the most beautiful problem occurs in 21th iranian (2003) olympiad
assume that P is n-gon ,lying on the plane ,we name its edge 1,2,..,n.
if S=s1,s2,s3,.... be a finite or infinite sequence such that for each i, si is in {1,2,...,n},
we move P on the plane according to the S in this form: at first we reflect P through the s1
( s1 means the edge which iys number is s1)then through s2 and so on like the figure below.
a)show that there exist the infinite sequence S sucth that if we move P according to S we cover all the plane
b)prove that the sequence in a) isn't periodic.
c)assume that P is regular pentagon ,which the radius of its circumcircle is 1,and D is circle ,with radius 1.00001 ,arbitrarily in the plane .does exist a sequence S such that we move P according to S then P reside in D completely?
2014 Tuymaada Olympiad, 3
The points $K$ and $L$ on the side $BC$ of a triangle $\triangle{ABC}$ are such that $\widehat{BAK}=\widehat{CAL}=90^\circ$. Prove that the midpoint of the altitude drawn from $A$, the midpoint of $KL$ and the circumcentre of $\triangle{ABC}$ are collinear.
[i](A. Akopyan, S. Boev, P. Kozhevnikov)[/i]
2010 Sharygin Geometry Olympiad, 22
A circle centered at a point $F$ and a parabola with focus $F$ have two common points. Prove that there exist four points $A, B, C, D$ on the circle such that the lines $AB, BC, CD$ and $DA$ touch the parabola.
2005 Iran MO (3rd Round), 4
a) Year 1872 Texas
3 gold miners found a peice of gold. They have a coin that with possibility of $\frac 12$ it will come each side, and they want to give the piece of gold to one of themselves depending on how the coin will come. Design a fair method (It means that each of the 3 miners will win the piece of gold with possibility of $\frac 13$) for the miners.
b) Year 2005, faculty of Mathematics, Sharif university of Technolgy
Suppose $0<\alpha<1$ and we want to find a way for people name $A$ and $B$ that the possibity of winning of $A$ is $\alpha$. Is it possible to find this way?
c) Year 2005 Ahvaz, Takhti Stadium
Two soccer teams have a contest. And we want to choose each player's side with the coin, But we don't know that our coin is fair or not. Find a way to find that coin is fair or not?
d) Year 2005,summer
In the National mathematical Oympiad in Iran. Each student has a coin and must find a way that the possibility of coin being TAIL is $\alpha$ or no. Find a way for the student.
2013 Romanian Master of Mathematics, 6
A token is placed at each vertex of a regular $2n$-gon. A [i]move[/i] consists in choosing an edge of the $2n$-gon and swapping the two tokens placed at the endpoints of that edge. After a finite number of moves have been performed, it turns out that every two tokens have been swapped exactly once. Prove that some edge has never been chosen.
2011 India Regional Mathematical Olympiad, 5
Let $ABC$ be a triangle and let $BB_1,CC_1$ be respectively the bisectors of $\angle{B},\angle{C}$ with $B_1$ on $AC$ and $C_1$ on $AB$, Let $E,F$ be the feet of perpendiculars drawn from $A$ onto $BB_1,CC_1$ respectively. Suppose $D$ is the point at which the incircle of $ABC$ touches $AB$. Prove that $AD=EF$
2013 Romanian Master of Mathematics, 3
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$. The lines $AB$ and $CD$ meet at $P$, the lines $AD$ and $BC$ meet at $Q$, and the diagonals $AC$ and $BD$ meet at $R$. Let $M$ be the midpoint of the segment $PQ$, and let $K$ be the common point of the segment $MR$ and the circle $\omega$. Prove that the circumcircle of the triangle $KPQ$ and $\omega$ are tangent to one another.
1983 IMO Longlists, 73
Let $ABC$ be a nonequilateral triangle. Prove that there exist two points $P$ and $Q$ in the plane of the triangle, one in the interior and one in the exterior of the circumcircle of $ABC$, such that the orthogonal projections of any of these two points on the sides of the triangle are vertices of an equilateral triangle.
2018 Junior Balkan Team Selection Tests - Romania, 3
Let $ABC$ be a triangle with $AB > AC$. Point $P \in (AB)$ is such that $\angle ACP = \angle ABC$. Let $D$ be the reflection of $P$ into the line $AC$ and let $E$ be the point in which the circumcircle of $BCD$ meets again the line $AC$. Prove that $AE = AC$.
2025 USA IMO Team Selection Test, 4
Let $ABC$ be a triangle, and let $X$, $Y$, and $Z$ be collinear points such that $AY=AZ$, $BZ=BX$, and $CX=CY$. Points $X'$, $Y'$, and $Z'$ are the reflections of $X$, $Y$, and $Z$ over $BC$, $CA$, and $AB$, respectively. Prove that if $X'Y'Z'$ is a nondegenerate triangle, then its circumcenter lies on the circumcircle of $ABC$.
[i]Michael Ren[/i]
1996 IMO Shortlist, 1
Let $ ABC$ be a triangle, and $ H$ its orthocenter. Let $ P$ be a point on the circumcircle of triangle $ ABC$ (distinct from the vertices $ A$, $ B$, $ C$), and let $ E$ be the foot of the altitude of triangle $ ABC$ from the vertex $ B$. Let the parallel to the line $ BP$ through the point $ A$ meet the parallel to the line $ AP$ through the point $ B$ at a point $ Q$. Let the parallel to the line $ CP$ through the point $ A$ meet the parallel to the line $ AP$ through the point $ C$ at a point $ R$. The lines $ HR$ and $ AQ$ intersect at some point $ X$. Prove that the lines $ EX$ and $ AP$ are parallel.
2013 Germany Team Selection Test, 3
Let $ABC$ be an acute-angled triangle with circumcircle $\omega$. Prove that there exists a point $J$ such that for any point $X$ inside $ABC$ if $AX,BX,CX$ intersect $\omega$ in $A_1,B_1,C_1$ and $A_2,B_2,C_2$ be reflections of $A_1,B_1,C_1$ in midpoints of $BC,AC,AB$ respectively then $A_2,B_2,C_2,J$ lie on a circle.
2025 India STEMS Category A, 3
Let $ABC$ be an acute scalene triangle with orthocenter $H$. Let $M$ be the midpoint of $BC$. $N$ is the point on line $AM$ such that $(BMN)$ is tangent to $AB$. Finally, let $H'$ be the reflection of $H$ in $B$. Prove that $\angle ANH'=90^{\circ}$.
[i]Proposed by Malay Mahajan and Siddharth Choppara[/i]
2009 India National Olympiad, 5
Let $ ABC$ be an acute angled triangle and let $ H$ be its ortho centre. Let $ h_{max}$ denote the largest altitude of the triangle $ ABC$. Prove that:
$AH \plus{} BH \plus{} CH\leq2h_{max}$
2012 China Girls Math Olympiad, 5
As shown in the figure below, the in-circle of $ABC$ is tangent to sides $AB$ and $AC$ at $D$ and $E$ respectively, and $O$ is the circumcenter of $BCI$. Prove that $\angle ODB = \angle OEC$.
[asy]import graph; size(5.55cm); pathpen=linewidth(0.7); pointpen=black; pen fp=fontsize(10); pointfontpen=fp; real xmin=-5.76,xmax=4.8,ymin=-3.69,ymax=3.71;
pen zzttqq=rgb(0.6,0.2,0), wwwwqq=rgb(0.4,0.4,0), qqwuqq=rgb(0,0.39,0);
pair A=(-2,2.5), B=(-3,-1.5), C=(2,-1.5), I=(-1.27,-0.15), D=(-2.58,0.18), O=(-0.5,-2.92);
D(A--B--C--cycle,zzttqq); D(arc(D,0.25,-104.04,-56.12)--(-2.58,0.18)--cycle,qqwuqq); D(arc((-0.31,0.81),0.25,-92.92,-45)--(-0.31,0.81)--cycle,qqwuqq);
D(A--B,zzttqq); D(B--C,zzttqq); D(C--A,zzttqq); D(CR(I,1.35),linewidth(1.2)+dotted+wwwwqq); D(CR(O,2.87),linetype("2 2")+blue); D(D--O); D((-0.31,0.81)--O);
D(A); D(B); D(C); D(I); D(D); D((-0.31,0.81)); D(O);
MP( "A", A, dir(110)); MP("B", B, dir(140)); D("C", C, dir(20)); D("D", D, dir(150)); D("E", (-0.31, 0.81), dir(60)); D("O", O, dir(290)); D("I", I, dir(100));
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]
2005 MOP Homework, 2
Let $ABC$ be a triangle, and let $D$ be a point on side $AB$. Circle $\omega_1$ passes through $A$ and $D$ and is tangent to line $AC$ at $A$. Circle $\omega_2$ passes through $B$ and $D$ and is tangent to line $BC$ at $B$. Circles $\omega_1$ and $\omega_2$ meet at $D$ and $E$. Point $F$ is the reflection of $C$ across the perpendicular bisector of $AB$. Prove that points $D$, $E$, and $F$ are collinear.
2021 EGMO, 4
Let $ABC$ be a triangle with incenter $I$ and let $D$ be an arbitrary point on the side $BC$. Let the line through $D$ perpendicular to $BI$ intersect $CI$ at $E$. Let the line through $D$ perpendicular to $CI$ intersect $BI$ at $F$. Prove that the reflection of $A$ across the line $EF$ lies on the line $BC$.
2017 Sharygin Geometry Olympiad, 5
Let $BH_b, CH_c$ be altitudes of an acute-angled triangle $ABC$. The line $H_bH_c$ meets the circumcircle of $ABC$ at points $X$ and $Y$. Points $P,Q$ are the reflections of $X,Y$ about $AB,AC$ respectively. Prove that $PQ \parallel BC$.
[i]Proposed by Pavel Kozhevnikov[/i]
2020-2021 Winter SDPC, #3
Let $ABCD$ be a quadrilateral, let $P$ be the intersection of $AB$ and $CD$, and let $O$ be the intersection of the perpendicular bisectors of $AB$ and $CD$. Suppose that $O$ does not lie on line $AB$ and $O$ does not lie on line $CD$. Let $B'$ and $D'$ be the reflections of $B$ and $D$ across $OP$. Show that if $AB'$ and $CD'$ meet on $OP$, then $ABCD$ is cyclic.