This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2011 Czech-Polish-Slovak Match, 3

Points $A$, $B$, $C$, $D$ lie on a circle (in that order) where $AB$ and $CD$ are not parallel. The length of arc $AB$ (which contains the points $D$ and $C$) is twice the length of arc $CD$ (which does not contain the points $A$ and $B$). Let $E$ be a point where $AC=AE$ and $BD=BE$. Prove that if the perpendicular line from point $E$ to the line $AB$ passes through the center of the arc $CD$ (which does not contain the points $A$ and $B$), then $\angle ACB = 108^\circ$.

2011 India IMO Training Camp, 1

Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$ [i]Proposed by Nazar Serdyuk, Ukraine[/i]

2021 China Girls Math Olympiad, 7

In an acute triangle $ABC$, $AB \neq AC$, $O$ is its circumcenter. $K$ is the reflection of $B$ over $AC$ and $L$ is the reflection of $C$ over $AB$. $X$ is a point within $ABC$ such that $AX \perp BC, XK=XL$. Points $Y, Z$ are on $\overline{BK}, \overline{CL}$ respectively, satisfying $XY \perp CK, XZ \perp BL$. Proof that $B, C, Y, O, Z$ lie on a circle.

1986 IMO Longlists, 63

Let $AA',BB', CC'$ be the bisectors of the angles of a triangle $ABC \ (A' \in BC, B' \in CA, C' \in AB)$. Prove that each of the lines $A'B', B'C', C'A'$ intersects the incircle in two points.

2017 Junior Balkan Team Selection Tests - Romania, 3

Let $I$ be the incenter of the scalene $\Delta ABC$, such, $AB<AC$, and let $I'$ be the reflection of point $I$ in line $BC$. The angle bisector $AI$ meets $BC$ at $D$ and circumcircle of $\Delta ABC$ at $E$. The line $EI'$ meets the circumcircle at $F$. Prove, that, $\text{(i) } \frac{AI}{IE}=\frac{ID}{DE}$ $\text{(ii) } IA=IF$

2010 AMC 12/AHSME, 18

A 16-step path is to go from $ ( \minus{} 4, \minus{}4)$ to $ (4,4)$ with each step increasing either the $x$-coordinate or the $y$-coordinate by 1. How many such paths stay outside or on the boundary of the square $ \minus{} 2 \le x \le 2$, $ \minus{} 2 \le y \le 2$ at each step? $ \textbf{(A)}\ 92 \qquad \textbf{(B)}\ 144 \qquad \textbf{(C)}\ 1568 \qquad \textbf{(D)}\ 1698 \qquad \textbf{(E)}\ 12,\!800$

2011 ELMO Shortlist, 4

Prove that for any convex pentagon $A_1A_2A_3A_4A_5$, there exists a unique pair of points $\{P,Q\}$ (possibly with $P=Q$) such that $\measuredangle{PA_i A_{i-1}} = \measuredangle{A_{i+1}A_iQ}$ for $1\le i\le 5$, where indices are taken $\pmod5$ and angles are directed $\pmod\pi$. [i]Calvin Deng.[/i]

EGMO 2017, 6

Let $ABC$ be an acute-angled triangle in which no two sides have the same length. The reflections of the centroid $G$ and the circumcentre $O$ of $ABC$ in its sides $BC,CA,AB$ are denoted by $G_1,G_2,G_3$ and $O_1,O_2,O_3$, respectively. Show that the circumcircles of triangles $G_1G_2C$, $G_1G_3B$, $G_2G_3A$, $O_1O_2C$, $O_1O_3B$, $O_2O_3A$ and $ABC$ have a common point. [i]The centroid of a triangle is the intersection point of the three medians. A median is a line connecting a vertex of the triangle to the midpoint of the opposite side.[/i]

2014 AMC 10, 24

The numbers 1, 2, 3, 4, 5 are to be arranged in a circle. An arrangement is [i]bad[/i] if it is not true that for every $n$ from $1$ to $15$ one can find a subset of the numbers that appear consecutively on the circle that sum to $n$. Arrangements that differ only by a rotation or a reflection are considered the same. How many different bad arrangements are there? $ \textbf {(A) } 1 \qquad \textbf {(B) } 2 \qquad \textbf {(C) } 3 \qquad \textbf {(D) } 4 \qquad \textbf {(E) } 5 $

2021 Pan-African, 2

Let $\Gamma$ be a circle, $P$ be a point outside it, and $A$ and $B$ the intersection points between $\Gamma$ and the tangents from $P$ to $\Gamma$. Let $K$ be a point on the line $AB$, distinct from $A$ and $B$ and let $T$ be the second intersection point of $\Gamma$ and the circumcircle of the triangle $PBK$.Also, let $P'$ be the reflection of $P$ in point $A$. Show that $\angle PBT=\angle P'KA$

2002 India IMO Training Camp, 13

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.

1998 India Regional Mathematical Olympiad, 4

Let $ABC$ be a triangle with $AB = AC$ and $\angle BAC = 30^{\circ}$, Let $A'$ be the reflection of $A$ in the line $BC$; $B'$ be the reflection of $B$ in the line $CA$; $C'$ be the reflection of $C$ in line $AB$, Show that $A'B'C'$ is an equilateral triangle.

Oliforum Contest I 2008, 2

Let $ ABCD$ be a cyclic quadrilateral with $ AB>CD$ and $ BC>AD$. Take points $ X$ and $ Y$ on the sides $ AB$ and $ BC$, respectively, so that $ AX\equal{}CD$ and $ AD\equal{}CY$. Let $ M$ be the midpoint of $ XY$. Prove that $ AMC$ is a right angle.

2012 Nordic, 2

Given a triangle $ABC$, let $P$ lie on the circumcircle of the triangle and be the midpoint of the arc $BC$ which does not contain $A$. Draw a straight line $l$ through $P$ so that $l$ is parallel to $AB$. Denote by $k$ the circle which passes through $B$, and is tangent to $l$ at the point $P$. Let $Q$ be the second point of intersection of $k$ and the line $AB$ (if there is no second point of intersection, choose $Q = B$). Prove that $AQ = AC$.

1989 AMC 12/AHSME, 24

Five people are sitting at a round table. Let $f \ge 0$ be the number of people sitting next to at least one female and $m \ge 0$ be the number of people sitting next to at least one male. The number of possible ordered pairs $(f,m)$ is $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11 $

2010 Tournament Of Towns, 6

In acute triangle $ABC$, an arbitrary point $P$ is chosen on altitude $AH$. Points $E$ and $F$ are the midpoints of sides $CA$ and $AB$ respectively. The perpendiculars from $E$ to $CP$ and from $F$ to $BP$ meet at point $K$. Prove that $KB = KC$.

2005 All-Russian Olympiad Regional Round, 11.6

11.6 Construct for each vertex of the quadrilateral of area $S$ a symmetric point wrt to the diagonal, which doesn't contain this vertex. Let $S'$ be an area of the obtained quadrilateral. Prove that $\frac{S'}{S}<3$. ([i]L. Emel'yanov[/i])

2010 USA Team Selection Test, 3

Let $h_a, h_b, h_c$ be the lengths of the altitudes of a triangle $ABC$ from $A, B, C$ respectively. Let $P$ be any point inside the triangle. Show that \[\frac{PA}{h_b+h_c} + \frac{PB}{h_a+h_c} + \frac{PC}{h_a+h_b} \ge 1.\]

2010 Contests, 3

Let $h_a, h_b, h_c$ be the lengths of the altitudes of a triangle $ABC$ from $A, B, C$ respectively. Let $P$ be any point inside the triangle. Show that \[\frac{PA}{h_b+h_c} + \frac{PB}{h_a+h_c} + \frac{PC}{h_a+h_b} \ge 1.\]

1990 Austrian-Polish Competition, 1

The distinct points $X_1, X_2, X_3, X_4, X_5, X_6$ all lie on the same side of the line $AB$. The six triangles $ABX_i$ are all similar. Show that the $X_i$ lie on a circle.

2010 India IMO Training Camp, 7

Let $ABCD$ be a cyclic quadrilaterla and let $E$ be the point of intersection of its diagonals $AC$ and $BD$. Suppose $AD$ and $BC$ meet in $F$. Let the midpoints of $AB$ and $CD$ be $G$ and $H$ respectively. If $\Gamma $ is the circumcircle of triangle $EGH$, prove that $FE$ is tangent to $\Gamma $.

2012 JBMO ShortLists, 2

Let $ABC$ be an isosceles triangle with $AB=AC$ . Let also $\omega$ be a circle of center $K$ tangent to the line $AC$ at $C$ which intersects the segment $BC$ again at $H$ . Prove that $HK \bot AB $.

2022 Brazil National Olympiad, 2

Let $ABC$ be an acute triangle, with $AB<AC$. Let $K$ be the midpoint of the arch $BC$ that does not contain $A$ and let $P$ be the midpoint of $BC$. Let $I_B,I_C$ be the $B$-excenter and $C$-excenter of $ABC$, respectively. Let $Q$ be the reflection of $K$ with respect to $A$. Prove that the points $P,Q,I_B,I_C$ are concyclic.

1992 China National Olympiad, 1

A convex quadrilateral $ABCD$ is inscribed in a circle with center $O$. The diagonals $AC$, $BD$ of $ABCD$ meet at $P$. Circumcircles of $\triangle ABP$ and $\triangle CDP$ meet at $P$ and $Q$ ($O,P,Q$ are pairwise distinct). Show that $\angle OQP=90^{\circ}$.

2024 Israel National Olympiad (Gillis), P4

Acute triangle $ABC$ is inscribed in a circle with center $O$. The reflections of $O$ across the three altitudes of the triangle are called $U$, $V$, $W$: $U$ over the altitude from $A$, $V$ over the altitude from $B$, and $W$ over the altitude from $C$. Let $\ell_A$ be a line through $A$ parallel to $VW$, and define $\ell_B$, $\ell_C$ similarly. Prove that the three lines $\ell_A$, $\ell_B$, $\ell_C$ are concurrent.