This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 81

2023 Israel TST, P1

A regular polygon with $20$ vertices is given. Alice colors each vertex in one of two colors. Bob then draws a diagonal connecting two opposite vertices. Now Bob draws perpendicular segments to this diagonal, each segment having vertices of the same color as endpoints. He gets a fish from Alice for each such segment he draws. How many fish can Bob guarantee getting, no matter Alice's goodwill?

2007 Sharygin Geometry Olympiad, 7

A convex polygon is circumscribed around a circle. Points of contact of its sides with the circle form a polygon with the same set of angles (the order of angles may differ). Is it true that the polygon is regular?

2010 Sharygin Geometry Olympiad, 8

Given is a regular polygon. Volodya wants to mark $k$ points on its perimeter so that any another regular polygon (maybe having a different number of sides) doesn’t contain all marked points on its perimeter. Find the minimal $k$ sufficient for any given polygon.

2004 Estonia Team Selection Test, 3

For which natural number $n$ is it possible to draw $n$ line segments between vertices of a regular $2n$-gon so that every vertex is an endpoint for exactly one segment and these segments have pairwise different lengths?

May Olympiad L2 - geometry, 2015.3

Let $ABCDEFGHI$ be a regular polygon of $9$ sides. The segments $AE$ and $DF$ intersect at $P$. Prove that $PG$ and $AF$ are perpendicular.

2022 Paraguay Mathematical Olympiad, 2

Santiago, Daniel and Fátima practice for the Math Olympics. Santiago thinks of a regular polygon and Daniel of another, without telling Fatima what the polygons are. They just tell you that one of the polygons has $3$ more sides than the other and that an angle of one of the polygons measures $10$ degrees more than one angle of the other. From this, and knowing that each interior angle of a regular polygon of $n$ sides measures $\frac{180(n-2)}{n}$ degrees, Fatima identifies what the polygons are. How many sides do the polygons that James and Daniel chose, have?

2021 Middle European Mathematical Olympiad, 4

Let $n$ be a positive integer. Prove that in a regular $6n$-gon, we can draw $3n$ diagonals with pairwise distinct ends and partition the drawn diagonals into $n$ triplets so that: [list] [*] the diagonals in each triplet intersect in one interior point of the polygon and [*] all these $n$ intersection points are distinct. [/list]

2012 Bundeswettbewerb Mathematik, 4

From the vertices of a regular 27-gon, seven are chosen arbitrarily. Prove that among these seven points there are three points that form an isosceles triangle or four points that form an isosceles trapezoid.

Ukrainian TYM Qualifying - geometry, III.13

Inside the regular $n$ -gon $M$ with side $a$ there are $n$ equal circles so that each touches two adjacent sides of the polygon $M$ and two other circles. Inside the formed "star", which is bounded by arcs, these $n$ equal circles are reconstructed so that each touches the two adjacent circles built in the previous step, and two more newly built circles. This process will take $k$ steps. Find the area $S_n (k)$ of the "star", which is formed in the center of the polygon $M$. Consider the spatial analogue of this problem.

1988 Tournament Of Towns, (166) 3

(a) The vertices of a regular $10$-gon are painted in turn black and white. Two people play the following game . Each in turn draws a diagonal connecting two vertices of the same colour . These diagonals must not intersect . The winner is the player who is able to make the last move. Who will win if both players adopt the best strategy? (b) Answer the same question for the regular $12$-gon . (V.G. Ivanov)

2016 Sharygin Geometry Olympiad, P19

Let $ABCDEF$ be a regular hexagon. Points $P$ and $Q$ on tangents to its circumcircle at $A$ and $D$ respectively are such that $PQ$ touches the minor arc $EF$ of this circle. Find the angle between $PB$ and $QC$.

1983 Tournament Of Towns, (042) O5

A point is chosen inside a regular $k$-gon in such a way that its orthogonal projections on to the sides all meet the respective sides at interior points. These points divide the sides into $2k$ segments. Let these segments be enumerated consecutively by the numbers $1,2, 3, ... ,2k$. Prove that the sum of the lengths of the segments having even numbers equals the sum of the segments having odd numbers. (A Andjans, Riga)

2001 Estonia Team Selection Test, 2

Point $X$ is taken inside a regular $n$-gon of side length $a$. Let $h_1,h_2,...,h_n$ be the distances from $X$ to the lines defined by the sides of the $n$-gon. Prove that $\frac{1}{h_1}+\frac{1}{h_2}+...+\frac{1}{h_n}>\frac{2\pi}{a}$

2001 Estonia Team Selection Test, 2

Point $X$ is taken inside a regular $n$-gon of side length $a$. Let $h_1,h_2,...,h_n$ be the distances from $X$ to the lines defined by the sides of the $n$-gon. Prove that $\frac{1}{h_1}+\frac{1}{h_2}+...+\frac{1}{h_n}>\frac{2\pi}{a}$

2012 Tournament of Towns, 2

Given a convex polyhedron and a sphere intersecting each its edge at two points so that each edge is trisected (divided into three equal parts). Is it necessarily true that all faces of the polyhedron are (a) congruent polygons? (b) regular polygons?

2022 Iran Team Selection Test, 7

Suppose that $n$ is a positive integer number. Consider a regular polygon with $2n$ sides such that one of its largest diagonals is parallel to the $x$-axis. Find the smallest integer $d$ such that there is a polynomial $P$ of degree $d$ whose graph intersects all sides of the polygon on points other than vertices. Proposed by Mohammad Ahmadi

2003 Estonia National Olympiad, 1

Let $A_1, A_2, ..., A_m$ and $B_2 , B_3,..., B_n$ be the points on a circle such that $A_1A_2... A_n$ is a regular $m$-gon and $A_1B_2...B_n$ is a regular $n$-gon whereby $n > m$ and the point $B_2$ lies between $A_1$ and $A_2$. Find $\angle B_2A_1A_2$.

2019 Istmo Centroamericano MO, 5

Gabriel plays to draw triangles using the vertices of a regular polygon with $2019$ sides, following these rules: (i) The vertices used by each triangle must not have been previously used. (ii) The sides of the triangle to be drawn must not intersect with the sides of the triangles previously drawn. If Gabriel continues to draw triangles until it is no longer possible, determine the minimum number of triangles that he drew.

1984 Brazil National Olympiad, 3

Given a regular dodecahedron of side $a$. Take two pairs of opposite faces: $E, E' $ and $F, F'$. For the pair $E, E'$ take the line joining the centers of the faces and take points $A$ and $C$ on the line each a distance $m$ outside one of the faces. Similarly, take $B$ and $D$ on the line joining the centers of $F, F'$ each a distance $m$ outside one of the faces. Show that $ABCD$ is a rectangle and find the ratio of its side lengths.

1969 Spain Mathematical Olympiad, 7

A convex polygon $A_1A_2 . . .A_n$ of $n$ sides and inscribed in a circle, has its sides that satisfy the inequalities $$A_nA_1 > A_1A_2 > A_2A_3 >...> A_{n-1}A_n$$ Show that its interior angles satisfy the inequalities $$\angle A_1 < \angle A_2 < \angle A_3 < ... < \angle A_{n-1}, \angle A_{n-1} > \angle A_n> \angle A_1.$$

2009 Estonia Team Selection Test, 3

Find all natural numbers $n$ for which there exists a convex polyhedron satisfying the following conditions: (i) Each face is a regular polygon. (ii) Among the faces, there are polygons with at most two different numbers of edges. (iii) There are two faces with common edge that are both $n$-gons.

May Olympiad L2 - geometry, 2019.5

We consider the $n$ vertices of a regular polygon with $n$ sides. There is a set of triangles with vertices at these $n$ points with the property that for each triangle in the set, the sides of at least one are not the side of any other triangle in the set. What is the largest amount of triangles that can have the set? [hide=original wording]Consideramos los n vértices de un polígono regular de n lados. Se tiene un conjunto de triángulos con vértices en estos n puntos con la propiedad que para cada triángulo del conjunto, al menos uno de sus lados no es lado de ningún otro triángulo del conjunto. ¿Cuál es la mayor cantidad de triángulos que puede tener el conjunto?[/hide]

1998 All-Russian Olympiad Regional Round, 9.7

Given a billiard in the form of a regular $1998$-gon $A_1A_2...A_{1998}$. A ball was released from the midpoint of side $A_1A_2$, which, reflected therefore from sides $A_2A_3$, $A_3A_4$, . . . , $A_{1998}A_1$ (according to the law, the angle of incidence is equal to the angle of reflection), returned to the starting point. Prove that the trajectory of the ball is a regular $1998$-gon.

2004 Estonia Team Selection Test, 3

For which natural number $n$ is it possible to draw $n$ line segments between vertices of a regular $2n$-gon so that every vertex is an endpoint for exactly one segment and these segments have pairwise different lengths?

1969 Dutch Mathematical Olympiad, 5

a) Prove that for $n = 2,3,4,...$ holds: $$\sin a + \sin 2a + ...+ \sin (n-1)a=\frac{\cos a \left(\frac{a}{2}\right) - \cos \left(n-\frac{1}{2}\right) a}{2 \sin \left(\frac{a}{2}\right)}$$ b) A point on the circumference of a wheel, which, remaining in a vertical plane, rolls along a horizontal path, describes, at one revolution of the wheel, a curve having a length equal to four times the diameter of the wheel. Prove this by first considering tilting a regular $n$-gon. [hide=original wording for part b]Een punt van de omtrek van een wiel dat, in een verticaal vlak blijvend, rolt over een horizontaal gedachte weg, beschrijft bij één omwenteling van het wiel een kromme die een lengte heeft die gelijk is aan viermaal de middellijn van het wiel. Bewijs dit door eerst een rondkantelende regelmatige n-hoek te beschouwen.[/hide]