Found problems: 264
Brazil L2 Finals (OBM) - geometry, 2001.1
A sheet of rectangular $ABCD$ paper, of area $1$, is folded along its diagonal $AC$ and then unfolded, then it is bent so that vertex $A$ coincides with vertex $C$ and then unfolded, leaving the crease $MN$, as shown below.
a) Show that the quadrilateral $AMCN$ is a rhombus.
b) If the diagonal $AC$ is twice the width $AD$, what is the area of the rhombus $AMCN$?
[img]https://2.bp.blogspot.com/-TeQ0QKYGzOQ/Xp9lQcaLbsI/AAAAAAAAL2E/JLXwEIPSr4U79tATcYzmcJjK5bGA6_RqACK4BGAYYCw/s400/2001%2Baomb%2Bl2.png[/img]
2007 Kazakhstan National Olympiad, 1
Convex quadrilateral $ABCD$ with $AB$ not equal to $DC$ is inscribed in a circle. Let $AKDL$ and $CMBN$ be rhombs with same side of $a$. Prove that the points $K, L, M, N$ lie on a circle.
2002 National Olympiad First Round, 33
Let $ABCD$ be a rhombus such that $m(\widehat{ABC}) = 40^\circ$. Let $E$ be the midpoint of $[BC]$ and $F$ be the foot of the perpendicular from $A$ to $DE$. What is $m(\widehat{DFC})$?
$
\textbf{a)}\ 100^\circ
\qquad\textbf{b)}\ 110^\circ
\qquad\textbf{c)}\ 115^\circ
\qquad\textbf{d)}\ 120^\circ
\qquad\textbf{e)}\ 135^\circ
$
2002 BAMO, 2
In the illustration, a regular hexagon and a regular octagon have been tiled with rhombuses.
In each case, the sides of the rhombuses are the same length as the sides of the regular polygon.
(a) Tile a regular decagon ($10$-gon) into rhombuses in this manner.
(b) Tile a regular dodecagon ($12$-gon) into rhombuses in this manner.
(c) How many rhombuses are in a tiling by rhombuses of a $2002$-gon?
Justify your answer.
[img]https://cdn.artofproblemsolving.com/attachments/8/a/8413e4e2712609eba07786e34ba2ce4aa72888.png[/img]
1959 AMC 12/AHSME, 3
If the diagonals of a quadrilateral are perpendicular to each other, the figure would always be included under the general classification:
$ \textbf{(A)}\ \text{rhombus} \qquad\textbf{(B)}\ \text{rectangles} \qquad\textbf{(C)}\ \text{square} \qquad\textbf{(D)}\ \text{isosceles trapezoid}\qquad\textbf{(E)}\ \text{none of these} $
2007 Bulgaria National Olympiad, 1
The quadrilateral $ABCD$, where $\angle BAD+\angle ADC>\pi$, is inscribed a circle with centre $I$. A line through $I$ intersects $AB$ and $CD$ in points $X$ and $Y$ respectively such that $IX=IY$. Prove that $AX\cdot DY=BX\cdot CY$.
2013 ITAMO, 5
$ABC$ is an isosceles triangle with $AB=AC$ and the angle in $A$ is less than $60^{\circ}$. Let $D$ be a point on $AC$ such that $\angle{DBC}=\angle{BAC}$. $E$ is the intersection between the perpendicular bisector of $BD$ and the line parallel to $BC$ passing through $A$. $F$ is a point on the line $AC$ such that $FA=2AC$ ($A$ is between $F$ and $C$).
Show that $EB$ and $AC$ are parallel and that the perpendicular from $F$ to $AB$, the perpendicular from $E$ to $AC$ and $BD$ are concurrent.
2011 Armenian Republican Olympiads, Problem 2
Let a hexagone with a diameter $D$ be given and let $d>\frac D 2.$ On each side of the hexagon one constructs a isosceles triangle with two equal sides of length $d$. Prove that the sum of the areas of those isoscele triangles is greater than the area of a rhombus with side lengths $d$ and a diagonal of length $D$.
(The diameter of a polygon is the maximum of the lengths of all its sides and diagonals.)
1951 Polish MO Finals, 5
A quadrilateral $ ABCD $ is inscribed in a circle. The lines $AB$ and $CD$ intersect at point $E$, and the lines $AD$ and $BC$ intersect at point $F$. The bisector of the angle $ AEC $ intersects the side $ BC $ at the point $ M $ and the side $ AD $ at the point $ N $; and the bisector of the angle $ BFD $ intersects the side $ AB $ at the point $ P $ and the side $ CD $ at the point $ Q $. Prove that the quadrilateral $MPNQ$ is a rhombus.
2003 AMC 12-AHSME, 22
Let $ ABCD$ be a rhombus with $ AC\equal{}16$ and $ BD\equal{}30$. Let $ N$ be a point on $ \overline{AB}$, and let $ P$ and $ Q$ be the feet of the perpendiculars from $ N$ to $ \overline{AC}$ and $ \overline{BD}$, respectively. Which of the following is closest to the minimum possible value of $ PQ$?
[asy]unitsize(2.5cm);
defaultpen(linewidth(.8pt)+fontsize(8pt));
pair D=(0,0), C=dir(0), A=dir(aSin(240/289)), B=shift(A)*C;
pair Np=waypoint(B--A,0.6), P=foot(Np,A,C), Q=foot(Np,B,D);
draw(A--B--C--D--cycle);
draw(A--C);
draw(B--D);
draw(Np--Q);
draw(Np--P);
label("$D$",D,SW);
label("$C$",C,SE);
label("$B$",B,NE);
label("$A$",A,NW);
label("$N$",Np,N);
label("$P$",P,SW);
label("$Q$",Q,SSE);
draw(rightanglemark(Np,P,C,2));
draw(rightanglemark(Np,Q,D,2));[/asy]$ \textbf{(A)}\ 6.5 \qquad
\textbf{(B)}\ 6.75 \qquad
\textbf{(C)}\ 7 \qquad
\textbf{(D)}\ 7.25 \qquad
\textbf{(E)}\ 7.5$
2012 JBMO ShortLists, 4
Let $ABC$ be an acute-angled triangle with circumcircle $\omega$ , and let $O$ , $H$ be the triangle's circumcenter and orthocenter respectively . Let also $A^{'}$ be the point where the angle bisector of the angle $BAC$ meets $\omega$ . If $A^{'}H=AH$ , then find the measure of the angle $BAC$.
2020 Polish Junior MO First Round, 7.
Consider the right prism with the rhombus with side $a$ and acute angle $60^{\circ}$ as a base. This prism was intersected by some plane intersecting its side edges, such that the cross-section of the prism and the plane is a square. Determine all possible lengths of the side of this square.
2009 Romanian Masters In Mathematics, 3
Given four points $ A_1, A_2, A_3, A_4$ in the plane, no three collinear, such that
\[ A_1A_2 \cdot A_3 A_4 \equal{} A_1 A_3 \cdot A_2 A_4 \equal{} A_1 A_4 \cdot A_2 A_3,
\]
denote by $ O_i$ the circumcenter of $ \triangle A_j A_k A_l$ with $ \{i,j,k,l\} \equal{} \{1,2,3,4\}.$ Assuming $ \forall i A_i \neq O_i ,$ prove that the four lines $ A_iO_i$ are concurrent or parallel.
[i]Nikolai Ivanov Beluhov, Bulgaria[/i]
2000 Tuymaada Olympiad, 2
A tangent $l$ to the circle inscribed in a rhombus meets its sides $AB$ and $BC$ at points $E$ and $F$ respectively.
Prove that the product $AE\cdot CF$ is independent of the choice of $l$.
2011 National Olympiad First Round, 21
Let $E$ be a point inside the rhombus $ABCD$ such that $|AE|=|EB|, m(\widehat{EAB}) = 11^{\circ}$, and $m(\widehat{EBC}) = 71^{\circ}$. Find $m(\widehat{DCE})$.
$\textbf{(A)}\ 72^{\circ} \qquad\textbf{(B)}\ 71^{\circ} \qquad\textbf{(C)}\ 70^{\circ} \qquad\textbf{(D)}\ 69^{\circ} \qquad\textbf{(E)}\ 68^{\circ}$
2019 Estonia Team Selection Test, 6
It is allowed to perform the following transformations in the plane with any integers $a$:
(1) Transform every point $(x, y)$ to the corresponding point $(x + ay, y)$,
(2) Transform every point $(x, y)$ to the corresponding point $(x, y + ax)$.
Does there exist a non-square rhombus whose all vertices have integer coordinates and which can be transformed to:
a) Vertices of a square,
b) Vertices of a rectangle with unequal side lengths?
2019 Latvia Baltic Way TST, 9
Let $ABCD$ be a rhombus with the condition $\angle ABC > 90^o$. The circle $\Gamma_B$ with center at $B$ goes through $C$, and the circle $\Gamma_C$ with center at $C$ goes through $B$. Denote by $E$ one of the intersection points of $\Gamma_B$ and $\Gamma_C$. The line $ED$ intersects intersects $\Gamma_B$ again at $F$. Find the value of $\angle AFB$.
2003 Romania National Olympiad, 1
Find the locus of the points $ M $ that are situated on the plane where a rhombus $ ABCD $ lies, and satisfy:
$$ MA\cdot MC+MB\cdot MD=AB^2 $$
[i]Ovidiu Pop[/i]
2003 Junior Balkan Team Selection Tests - Romania, 1
Consider a rhombus $ABCD$ with center $O$. A point $P$ is given inside the rhombus, but not situated on the diagonals. Let $M,N,Q,R$ be the projections of $P$ on the sides $(AB), (BC), (CD), (DA)$, respectively. The perpendicular bisectors of the segments $MN$ and $RQ$ meet at $S$ and the perpendicular bisectors of the segments $NQ$ and $MR$ meet at $T$. Prove that $P, S, T$ and $O$ are the vertices of a rectangle.
2004 AMC 12/AHSME, 24
A plane contains points $ A$ and $ B$ with $ AB \equal{} 1$. Let $ S$ be the union of all disks of radius $ 1$ in the plane that cover $ \overline{AB}$. What is the area of $ S$?
$ \textbf{(A)}\ 2\pi \plus{} \sqrt3 \qquad \textbf{(B)}\ \frac {8\pi}{3} \qquad \textbf{(C)}\ 3\pi \minus{} \frac {\sqrt3}{2} \qquad \textbf{(D)}\ \frac {10\pi}{3} \minus{} \sqrt3 \qquad \textbf{(E)}\ 4\pi \minus{} 2\sqrt3$
1952 Poland - Second Round, 3
Are the following statements true?
a) if the four vertices of a rectangle lie on the four sides of a rhombus, then the sides of the rectangle are parallel to the diagonals of the rhombus;
b) if the four vertices of a square lie on the four sides of a rhombus that is not a square, then the sides of the square are parallel to the diagonals of the rhombus.
OMMC POTM, 2022 10
Define a convex quadrilateral $\mathcal{P}$ on the plane. In a turn, it is allowed to take some vertex of $\mathcal{P}$, move it perpendicular to the current diagonal of $\mathcal{P}$ not containing it, so long as it never crosses that diagonal. Initially $\mathcal{P}$ is a parallelogram and after several turns, it is similar but not congruent to its original shape. Show that $\mathcal P$ is a rhombus.
[i]Proposed by Evan Chang (squareman), USA[/i]
2009 Middle European Mathematical Olympiad, 3
Let $ ABCD$ be a convex quadrilateral such that $ AB$ and $ CD$ are not parallel and $ AB\equal{}CD$. The midpoints of the diagonals $ AC$ and $ BD$ are $ E$ and $ F$, respectively. The line $ EF$ meets segments $ AB$ and $ CD$ at $ G$ and $ H$, respectively. Show that $ \angle AGH \equal{} \angle DHG$.
2009 Junior Balkan Team Selection Tests - Romania, 2
Consider a rhombus $ABCD$. Point $M$ and $N$ are given on the line segments $AC$ and $BC$ respectively, such that $DM = MN$. Lines $AC$ and $DN$ meet at point $P$ and lines $AB$ and $DM$ meet at point $R$. Prove that $RP = PD$.
1991 IMO Shortlist, 7
$ ABCD$ is a terahedron: $ AD\plus{}BD\equal{}AC\plus{}BC,$ $ BD\plus{}CD\equal{}BA\plus{}CA,$ $ CD\plus{}AD\equal{}CB\plus{}AB,$ $ M,N,P$ are the mid points of $ BC,CA,AB.$ $ OA\equal{}OB\equal{}OC\equal{}OD.$ Prove that $ \angle MOP \equal{} \angle NOP \equal{}\angle NOM.$