This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 594

1970 All Soviet Union Mathematical Olympiad, 137

Prove that from every set of $200$ integers you can choose a subset of $100$ with the total sum divisible by $100$.

1991 ITAMO, 3

We consider the sums of the form $\pm 1 \pm 4 \pm 9\pm ... \pm n^2$. Show that every integer can be represented in this form for some $n$. (For example, $3 = -1 + 4$ and $8 = 1-4-9+16+25-36-49+64$.)

2007 Thailand Mathematical Olympiad, 14

The sum $$\sum_{k=84}^{8000}{k \choose 84}{{8084 - k} \choose 84}$$ can be written as a binomial coefficient $a \choose b$ for integers $a, b$. Find a possible pair $(a, b)$

2015 Indonesia MO Shortlist, C7

Show that there is a subset of $A$ from $\{1,2, 3,... , 2014\}$ such that : (i) $|A| = 12$ (ii) for each coloring number in $A$ with red or white , we can always find some numbers colored in $A$ whose sum is $2015$.

1998 Austrian-Polish Competition, 4

For positive integers $m, n$, denote $$S_m(n)=\sum_{1\le k \le n} \left[ \sqrt[k^2]{k^m}\right]$$ Prove that $S_m(n) \le n + m (\sqrt[4]{2^m}-1)$

1977 All Soviet Union Mathematical Olympiad, 248

Given natural numbers $x_1,x_2,...,x_n,y_1,y_2,...,y_m$. The following condition is valid: $$(x_1+x_2+...+x_n)=(y_1+y_2+...+y_m)<mn \,\,\,\, (*)$$ Prove that it is possible to delete some terms from (*) (not all and at least one) and to obtain another valid condition.

1945 Moscow Mathematical Olympiad, 095

Two circles are tangent externally at one point. Common external tangents are drawn to them and the tangent points are connected. Prove that the sum of the lengths of the opposite sides of the quadrilateral obtained are equal.

2016 Bundeswettbewerb Mathematik, 1

There are $\tfrac{n(n+1)}{2}$ distinct sums of two distinct numbers, if there are $n$ numbers. For which $n \ (n \geq 3)$ do there exist $n$ distinct integers, such that those sums are $\tfrac{n(n-1)}{2}$ consecutive numbers?

2007 Estonia Math Open Junior Contests, 10

Prove that for every integer $k$, there exists a integer $n$ which can be expressed in at least $k$ different ways as the sum of a number of squares of integers (regardless of the order of additions) where the additions are all in different pairs.

1981 Spain Mathematical Olympiad, 1

Tags: algebra , sum
Calculate the sum of $n$ addends $$7 + 77 + 777 +...+ 7... 7.$$

1945 Moscow Mathematical Olympiad, 099

Given the $6$ digits: $0, 1, 2, 3, 4, 5$. Find the sum of all even four-digit numbers which can be expressed with the help of these figures (the same figure can be repeated).

2016 JBMO Shortlist, 2

Tags: combinatorics , sum , prime
The natural numbers from $1$ to $50$ are written down on the blackboard. At least how many of them should be deleted, in order that the sum of any two of the remaining numbers is not a prime?

1993 Poland - Second Round, 5

Let $D,E,F$ be points on the sides $BC,CA,AB$ of a triangle $ABC$, respectively. Suppose that the inradii of the triangles $AEF,BFD,CDE$ are all equal to $r_1$. If $r_2$ and $r$ are the inradii of triangles $DEF$ and $ABC$ respectively, prove that $r_1 +r_2 =r$.

2017 Irish Math Olympiad, 3

Tags: geometry , sum
A line segment $B_0B_n$ is divided into $n$ equal parts at points $B_1,B_2,...,B_{n-1} $ and $A$ is a point such that $\angle B_0AB_n$ is a right angle. Prove that : $$\sum_{k=0}^{n} |AB_k|^{2} = \sum_{k=0}^{n} |B_0B_k|^2$$

2019 Istmo Centroamericano MO, 4

Tags: algebra , sum
Let $x, y, z$ be nonzero real numbers such that $ x + y + z = 0$ and $$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}= 1 -xyz + \frac{1}{xyz}.$$ Determine the value of the expression ' $$\frac{x}{(1-xy) (1-xz)}+\frac{y}{(1- yx) (1- yz)}+\frac{z}{(1- zx) (1-zy)}.$$

2012 Danube Mathematical Competition, 4

Tags: combinatorics , sum , subset , set
Let $A$ be a subset with seven elements of the set $\{1,2,3, ...,26\}$. Show that there are two distinct elements of $A$, having the same sum of their elements.

2001 Switzerland Team Selection Test, 4

For a natural number $n \ge 2$, consider all representations of $n$ as a sum of its distinct divisors, $n = t_1 + t_2 + ... + t_k, t_i| n$. Two such representations differing only in order of the summands are considered the same (for example, $20 = 10+5+4+1$ and $20 = 5+1+10+4$). Let $a(n)$ be the number of different representations of $n$ in this form. Prove or disprove: There exists M such that $a(n) \le M$ for all $n \ge 2$.

2015 Bundeswettbewerb Mathematik Germany, 2

A sum of $335$ pairwise distinct positive integers equals $100000$. a) What is the least number of uneven integers in that sum? b) What is the greatest number of uneven integers in that sum?

2002 Estonia National Olympiad, 3

John takes seven positive integers $a_1,a_2,...,a_7$ and writes the numbers $a_i a_j$, $a_i+a_j$ and $|a_i -a_j |$ for all $i \ne j$ on the blackboard. Find the greatest possible number of distinct odd integers on the blackboard.

1999 Switzerland Team Selection Test, 8

Find all $n$ for which there are real numbers $0 < a_1 \le a_2 \le ... \le a_n$ with $$\begin{cases} \sum_{k=1}^{n}a_k = 96 \\ \\ \sum_{k=1}^{n}a_k^2 = 144 \\ \\ \sum_{k=1}^{n}a_k^3 = 216 \end{cases}$$

1998 Tuymaada Olympiad, 1

Write the number $\frac{1997}{1998}$ as a sum of different numbers, inverse to naturals.

1996 Singapore Senior Math Olympiad, 2

Let $180^o < \theta_1 < \theta_2 <...< \theta_n = 360^o$. For $i = 1,2,..., n$, $P_i = (\cos \theta_i^o, \sin \theta_i^o)$ is a point on the circle $C$ with centre $(0,0)$ and radius $1$. Let $P$ be any point on the upper half of $C$. Find the coordinates of $P$ such that the sum of areas $[PP_1P_2] + [PP_2P_3] + ...+ [PP_{n-1}P_n]$ attains its maximum.

2009 Chile National Olympiad, 3

Tags: number theory , sum
Let $S = \frac{1}{a_1}+\frac{2}{a_2}+ ... +\frac{100}{a_{100}}$ where $a_1, a_2,..., a_{100}$ are positive integers. What are all the possible integer values that $S$ can take ?

2021 Abels Math Contest (Norwegian MO) Final, 2a

Tags: number theory , sum
Show that for all $n\ge 3$ there are $n$ different positive integers $x_1,x_2, ...,x_n$ such that $$\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_n}= 1.$$

2006 Tournament of Towns, 1

Tags: combinatorics , sum
Two positive integers are written on the blackboard. Mary records in her notebook the square of the smaller number and replaces the larger number on the blackboard by the difference of the two numbers. With the new pair of numbers, she repeats the process, and continues until one of the numbers on the blackboard becomes zero. What will be the sum of the numbers in Mary's notebook at that point? (4)