This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 701

1982 IMO Shortlist, 20

Let $ABCD$ be a convex quadrilateral and draw regular triangles $ABM, CDP, BCN, ADQ$, the first two outward and the other two inward. Prove that $MN = AC$. What can be said about the quadrilateral $MNPQ$?

2010 Princeton University Math Competition, 7

The expression $\sin2^\circ\sin4^\circ\sin6^\circ\cdots\sin90^\circ$ is equal to $p\sqrt{5}/2^{50}$, where $p$ is an integer. Find $p$.

1978 Austrian-Polish Competition, 2

A parallelogram is inscribed into a regular hexagon so that the centers of symmetry of both figures coincide. Prove that the area of the parallelogram does not exceed $2/3$ the area of the hexagon.

2012 AIME Problems, 13

Equilateral $\triangle ABC$ has side length $\sqrt{111}$. There are four distinct triangles $AD_1E_1$, $AD_1E_2$, $AD_2E_3$, and $AD_2E_4$, each congruent to $\triangle ABC$, with $BD_1 = BD_2=\sqrt{11}$. Find $\sum^4_{k=1}(CE_k)^2$.

2019 Switzerland Team Selection Test, 5

Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.

2000 Italy TST, 2

Let $ ABC$ be an isosceles right triangle and $M$ be the midpoint of its hypotenuse $AB$. Points $D$ and $E$ are taken on the legs $AC$ and $BC$ respectively such that $AD=2DC$ and $BE=2EC$. Lines $AE$ and $DM$ intersect at $F$. Show that $FC$ bisects the $\angle DFE$.

1972 AMC 12/AHSME, 23

[asy] draw((0,0)--(0,1)--(2,1)--(2,0)--cycle^^(.5,1)--(.5,2)--(1.5,2)--(1.5,1)--(.5,2)^^(.5,1)--(1.5,2)^^(1,2)--(1,0)); //Credit to Zimbalono for the diagram[/asy] The radius of the smallest circle containing the symmetric figure composed of the $3$ unit squares shown above is $\textbf{(A) }\sqrt{2}\qquad\textbf{(B) }\sqrt{1.25}\qquad\textbf{(C) }1.25\qquad\textbf{(D) }\frac{5\sqrt{17}}{16}\qquad \textbf{(E) }\text{None of these}$

1988 Polish MO Finals, 2

For a permutation $P = (p_1, p_2, ... , p_n)$ of $(1, 2, ... , n)$ define $X(P)$ as the number of $j$ such that $p_i < p_j$ for every $i < j$. What is the expected value of $X(P)$ if each permutation is equally likely?

2002 National Olympiad First Round, 17

Let $ABCD$ be a trapezoid and a tangential quadrilateral such that $AD || BC$ and $|AB|=|CD|$. The incircle touches $[CD]$ at $N$. $[AN]$ and $[BN]$ meet the incircle again at $K$ and $L$, respectively. What is $\dfrac {|AN|}{|AK|} + \dfrac {|BN|}{|BL|}$? $ \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 9 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 16 $

2002 Turkey Team Selection Test, 1

If a function $f$ defined on all real numbers has at least two centers of symmetry, show that this function can be written as sum of a linear function and a periodic function. [For every real number $x$, if there is a real number $a$ such that $f(a-x) + f(a+x) =2f(a)$, the point $(a,f(a))$ is called a center of symmetry of the function $f$.]

2012 AMC 10, 25

A bug travels from $A$ to $B$ along the segments in the hexagonal lattice pictured below. The segments marked with an arrow can be traveled only in the direction of the arrow, and the bug never travels the same segment more than once. How many different paths are there? [asy] size(10cm); draw((0.0,0.0)--(1.0,1.7320508075688772)--(3.0,1.7320508075688772)--(4.0,3.4641016151377544)--(6.0,3.4641016151377544)--(7.0,5.196152422706632)--(9.0,5.196152422706632)--(10.0,6.928203230275509)--(12.0,6.928203230275509)); draw((0.0,0.0)--(1.0,1.7320508075688772)--(3.0,1.7320508075688772)--(4.0,3.4641016151377544)--(6.0,3.4641016151377544)--(7.0,5.196152422706632)--(9.0,5.196152422706632)--(10.0,6.928203230275509)--(12.0,6.928203230275509)); draw((3.0,-1.7320508075688772)--(4.0,0.0)--(6.0,0.0)--(7.0,1.7320508075688772)--(9.0,1.7320508075688772)--(10.0,3.4641016151377544)--(12.0,3.464101615137755)--(13.0,5.196152422706632)--(15.0,5.196152422706632)); draw((6.0,-3.4641016151377544)--(7.0,-1.7320508075688772)--(9.0,-1.7320508075688772)--(10.0,0.0)--(12.0,0.0)--(13.0,1.7320508075688772)--(15.0,1.7320508075688776)--(16.0,3.464101615137755)--(18.0,3.4641016151377544)); draw((9.0,-5.196152422706632)--(10.0,-3.464101615137755)--(12.0,-3.464101615137755)--(13.0,-1.7320508075688776)--(15.0,-1.7320508075688776)--(16.0,0)--(18.0,0.0)--(19.0,1.7320508075688772)--(21.0,1.7320508075688767)); draw((12.0,-6.928203230275509)--(13.0,-5.196152422706632)--(15.0,-5.196152422706632)--(16.0,-3.464101615137755)--(18.0,-3.4641016151377544)--(19.0,-1.7320508075688772)--(21.0,-1.7320508075688767)--(22.0,0)); draw((0.0,-0.0)--(1.0,-1.7320508075688772)--(3.0,-1.7320508075688772)--(4.0,-3.4641016151377544)--(6.0,-3.4641016151377544)--(7.0,-5.196152422706632)--(9.0,-5.196152422706632)--(10.0,-6.928203230275509)--(12.0,-6.928203230275509)); draw((3.0,1.7320508075688772)--(4.0,-0.0)--(6.0,-0.0)--(7.0,-1.7320508075688772)--(9.0,-1.7320508075688772)--(10.0,-3.4641016151377544)--(12.0,-3.464101615137755)--(13.0,-5.196152422706632)--(15.0,-5.196152422706632)); draw((6.0,3.4641016151377544)--(7.0,1.7320508075688772)--(9.0,1.7320508075688772)--(10.0,-0.0)--(12.0,-0.0)--(13.0,-1.7320508075688772)--(15.0,-1.7320508075688776)--(16.0,-3.464101615137755)--(18.0,-3.4641016151377544)); draw((9.0,5.1961524)--(10.0,3.464101)--(12.0,3.46410)--(13.0,1.73205)--(15.0,1.732050)--(16.0,0)--(18.0,-0.0)--(19.0,-1.7320)--(21.0,-1.73205080)); draw((12.0,6.928203)--(13.0,5.1961524)--(15.0,5.1961524)--(16.0,3.464101615)--(18.0,3.4641016)--(19.0,1.7320508)--(21.0,1.732050)--(22.0,0)); dot((0,0)); dot((22,0)); label("$A$",(0,0),WNW); label("$B$",(22,0),E); filldraw((2.0,1.7320508075688772)--(1.6,1.2320508075688772)--(1.75,1.7320508075688772)--(1.6,2.232050807568877)--cycle,black); filldraw((5.0,3.4641016151377544)--(4.6,2.9641016151377544)--(4.75,3.4641016151377544)--(4.6,3.9641016151377544)--cycle,black); filldraw((8.0,5.196152422706632)--(7.6,4.696152422706632)--(7.75,5.196152422706632)--(7.6,5.696152422706632)--cycle,black); filldraw((11.0,6.928203230275509)--(10.6,6.428203230275509)--(10.75,6.928203230275509)--(10.6,7.428203230275509)--cycle,black); filldraw((4.6,0.0)--(5.0,-0.5)--(4.85,0.0)--(5.0,0.5)--cycle,white); filldraw((8.0,1.732050)--(7.6,1.2320)--(7.75,1.73205)--(7.6,2.2320)--cycle,black); filldraw((11.0,3.4641016)--(10.6,2.9641016)--(10.75,3.46410161)--(10.6,3.964101)--cycle,black); filldraw((14.0,5.196152422706632)--(13.6,4.696152422706632)--(13.75,5.196152422706632)--(13.6,5.696152422706632)--cycle,black); filldraw((8.0,-1.732050)--(7.6,-2.232050)--(7.75,-1.7320508)--(7.6,-1.2320)--cycle,black); filldraw((10.6,0.0)--(11,-0.5)--(10.85,0.0)--(11,0.5)--cycle,white); filldraw((14.0,1.7320508075688772)--(13.6,1.2320508075688772)--(13.75,1.7320508075688772)--(13.6,2.232050807568877)--cycle,black); filldraw((17.0,3.464101615137755)--(16.6,2.964101615137755)--(16.75,3.464101615137755)--(16.6,3.964101615137755)--cycle,black); filldraw((11.0,-3.464101615137755)--(10.6,-3.964101615137755)--(10.75,-3.464101615137755)--(10.6,-2.964101615137755)--cycle,black); filldraw((14.0,-1.7320508075688776)--(13.6,-2.2320508075688776)--(13.75,-1.7320508075688776)--(13.6,-1.2320508075688776)--cycle,black); filldraw((16.6,0)--(17,-0.5)--(16.85,0)--(17,0.5)--cycle,white); filldraw((20.0,1.7320508075688772)--(19.6,1.2320508075688772)--(19.75,1.7320508075688772)--(19.6,2.232050807568877)--cycle,black); filldraw((14.0,-5.196152422706632)--(13.6,-5.696152422706632)--(13.75,-5.196152422706632)--(13.6,-4.696152422706632)--cycle,black); filldraw((17.0,-3.464101615137755)--(16.6,-3.964101615137755)--(16.75,-3.464101615137755)--(16.6,-2.964101615137755)--cycle,black); filldraw((20.0,-1.7320508075688772)--(19.6,-2.232050807568877)--(19.75,-1.7320508075688772)--(19.6,-1.2320508075688772)--cycle,black); filldraw((2.0,-1.7320508075688772)--(1.6,-1.2320508075688772)--(1.75,-1.7320508075688772)--(1.6,-2.232050807568877)--cycle,black); filldraw((5.0,-3.4641016)--(4.6,-2.964101)--(4.75,-3.4641)--(4.6,-3.9641016)--cycle,black); filldraw((8.0,-5.1961524)--(7.6,-4.6961524)--(7.75,-5.19615242)--(7.6,-5.696152422)--cycle,black); filldraw((11.0,-6.9282032)--(10.6,-6.4282032)--(10.75,-6.928203)--(10.6,-7.428203)--cycle,black);[/asy] $ \textbf{(A)}\ 2112\qquad\textbf{(B)}\ 2304\qquad\textbf{(C)}\ 2368\qquad\textbf{(D)}\ 2384\qquad\textbf{(E)}\ 2400 $

1993 All-Russian Olympiad, 2

Tags: symmetry , geometry
From the symmetry center of two congruent intersecting circles, two rays are drawn that intersect the circles at four non-collinear points. Prove that these points lie on one circle.

2009 Moldova Team Selection Test, 3

[color=darkred]Quadrilateral $ ABCD$ is inscribed in the circle of diameter $ BD$. Point $ A_1$ is reflection of point $ A$ wrt $ BD$ and $ B_1$ is reflection of $ B$ wrt $ AC$. Denote $ \{P\}\equal{}CA_1 \cap BD$ and $ \{Q\}\equal{}DB_1\cap AC$. Prove that $ AC\perp PQ$.[/color]

Ukrainian TYM Qualifying - geometry, 2011.14

Given a quadrilateral $ABCD$, inscribed in a circle $\omega$ such that $AB=AD$ and $CB=CD$ . Take the point $P \in \omega$. Let the vertices of the quadrilateral $Q_1Q_2Q_3Q_4$ be symmetric to the point P wrt the lines $AB$, $BC$, $CD$, and $DA$, respectively. a) Prove that the points symmetric to the point $P$ wrt lines $Q_1Q_22, Q_2Q_3, Q_3Q_4$ and $Q_4Q_1$, lie on one line. b) Prove that when the point $P$ moves in a circle $\omega$, then all such lines pass through one common point.

2009 National Olympiad First Round, 33

$ AL$, $ BM$, and $ CN$ are the medians of $ \triangle ABC$. $ K$ is the intersection of medians. If $ C,K,L,M$ are concyclic and $ AB \equal{} \sqrt 3$, then the median $ CN$ = ? $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ \sqrt 3 \qquad\textbf{(C)}\ \frac {3\sqrt3}{2} \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None}$

2007 CentroAmerican, 2

In a triangle $ABC$, the angle bisector of $A$ and the cevians $BD$ and $CE$ concur at a point $P$ inside the triangle. Show that the quadrilateral $ADPE$ has an incircle if and only if $AB=AC$.

2012 Brazil Team Selection Test, 3

Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear. [i]Proposed by Ismail Isaev and Mikhail Isaev, Russia[/i]

1994 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 5

In how many ways can you color the six sides of a cube in black or white? (Do note that the cube is unchanged when rotated?) A. 7 B. 10 C. 20 D. 30 E. 36

1991 Arnold's Trivium, 11

Investigate the convergence of the integral \[\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\frac{dxdy}{1+x^4y^4}\]

2011 USAJMO, 4

A [i]word[/i] is defined as any finite string of letters. A word is a [i]palindrome[/i] if it reads the same backwards and forwards. Let a sequence of words $W_0, W_1, W_2,...$ be defined as follows: $W_0 = a, W_1 = b$, and for $n \ge 2$, $W_n$ is the word formed by writing $W_{n-2}$ followed by $W_{n-1}$. Prove that for any $n \ge 1$, the word formed by writing $W_1, W_2, W_3,..., W_n$ in succession is a palindrome.

2013 Regional Competition For Advanced Students, 4

We call a pentagon [i]distinguished [/i] if either all side lengths or all angles are equal. We call it [i]very distinguished[/i] if in addition two of the other parts are equal. i.e. $5$ sides and $2$ angles or $2$ sides and $5$ angles.Show that every very distinguished pentagon has an axis of symmetry.

2010 Argentina Team Selection Test, 2

Let $ABC$ be a triangle with $AB = AC$. The incircle touches $BC$, $AC$ and $AB$ at $D$, $E$ and $F$ respectively. Let $P$ be a point on the arc $\overarc{EF}$ that does not contain $D$. Let $Q$ be the second point of intersection of $BP$ and the incircle of $ABC$. The lines $EP$ and $EQ$ meet the line $BC$ at $M$ and $N$, respectively. Prove that the four points $P, F, B, M$ lie on a circle and $\frac{EM}{EN} = \frac{BF}{BP}$.

2014 AIME Problems, 14

Let $m$ be the largest real solution to the equation \[\frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19}= x^2-11x-4.\] There are positive integers $a,b,c$ such that $m = a + \sqrt{b+\sqrt{c}}$. Find $a+b+c$.

2001 Putnam, 4

Triangle $ABC$ has area $1$. Points $E$, $F$, and $G$ lie, respectively, on sides $BC$, $CA$, and $AB$ such that $AE$ bisects $BF$ at point $R$, $BF$ bisects $CG$ at point $S$, and $CG$ bisects $AE$ at point $T$. Find the area of the triangle $RST$.

1982 IMO Longlists, 38

Numbers $u_{n,k} \ (1\leq k \leq n)$ are defined as follows \[u_{1,1}=1, \quad u_{n,k}=\binom{n}{k} - \sum_{d \mid n, d \mid k, d>1} u_{n/d, k/d}.\] (the empty sum is defined to be equal to zero). Prove that $n \mid u_{n,k}$ for every natural number $n$ and for every $k \ (1 \leq k \leq n).$