This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 353

2017 Tuymaada Olympiad, 7

A point $E$ lies on the extension of the side $AD$ of the rectangle $ABCD$ over $D$. The ray $EC$ meets the circumcircle $\omega$ of $ABE$ at the point $F\ne E$. The rays $DC$ and $AF$ meet at $P$. $H$ is the foot of the perpendicular drawn from $C$ to the line $\ell$ going through $E$ and parallel to $AF$. Prove that the line $PH$ is tangent to $\omega$. (A. Kuznetsov)

2018 Bosnia And Herzegovina - Regional Olympiad, 4

Let $ABCD$ be a cyclic quadrilateral and let $k_1$ and $k_2$ be circles inscribed in triangles $ABC$ and $ABD$. Prove that external common tangent of those circles (different from $AB$) is parallel with $CD$

2012 Swedish Mathematical Competition, 3

The catheti $AC$ and $BC$ in a right-angled triangle $ABC$ have lengths $b$ and $a$, respectively. A circle centered at $C$ is tangent to hypotenuse $AB$ at point $D$. The tangents to the circle through points $A$ and $B$ intersect the circle at points $E$ and $F$, respectively (where $E$ and $F$ are both different from $D$). Express the length of the segment $EF$ in terms of $a$ and $b$.

2020 Regional Olympiad of Mexico Southeast, 5

Let $ABC$ an acute triangle with $\angle BAC\geq 60^\circ$ and $\Gamma$ it´s circumcircule. Let $P$ the intersection of the tangents to $\Gamma$ from $B$ and $C$. Let $\Omega$ the circumcircle of the triangle $BPC$. The bisector of $\angle BAC$ intersect $\Gamma$ again in $E$ and $\Omega$ in $D$, in the way that $E$ is between $A$ and $D$. Prove that $\frac{AE}{ED}\leq 2$ and determine when equality holds.

Indonesia MO Shortlist - geometry, g6

Given an $ABC$ acute triangle with $O$ the center of the circumscribed circle. Suppose that $\omega$ is a circle that is tangent to the line $AO$ at point $A$ and also tangent to the line $BC$. Prove that $\omega$ is also tangent to the circumcircle of the triangle $BOC$.

2020 Adygea Teachers' Geometry Olympiad, 4

Tags: angle , arc , tangent , min , length , circles , geometry
A circle is inscribed in an angle with vertex $O$, touching its sides at points $M$ and $N$. On an arc $MN$ nearest to point $O$, an arbitrary point $P$ is selected. At point $P$, a tangent is drawn to the circle $P$, intersecting the sides of the angle at points $A$ and $B$. Prove that that the length of the segment $AB$ is the smallest when $P$ is its midpoint.

2023 Yasinsky Geometry Olympiad, 3

Tags: tangent , geometry
$ABC$ is a right triangle with $\angle C = 90^o$. Let $N$ be the middle of arc $BAC$ of the circumcircle and $K$ be the intersection point of $CN$ and $AB$. Assume $T$ is a point on a line $AK$ such that $TK=KA$. Prove that the circle with center $T$ and radius $TK$ is tangent to $BC$. (Mykhailo Sydorenko)

2014 IMO, 3

Convex quadrilateral $ABCD$ has $\angle ABC = \angle CDA = 90^{\circ}$. Point $H$ is the foot of the perpendicular from $A$ to $BD$. Points $S$ and $T$ lie on sides $AB$ and $AD$, respectively, such that $H$ lies inside triangle $SCT$ and \[ \angle CHS - \angle CSB = 90^{\circ}, \quad \angle THC - \angle DTC = 90^{\circ}. \] Prove that line $BD$ is tangent to the circumcircle of triangle $TSH$.

2020 IMO Shortlist, G8

Let $ABC$ be a triangle with incenter $I$ and circumcircle $\Gamma$. Circles $\omega_{B}$ passing through $B$ and $\omega_{C}$ passing through $C$ are tangent at $I$. Let $\omega_{B}$ meet minor arc $AB$ of $\Gamma$ at $P$ and $AB$ at $M\neq B$, and let $\omega_{C}$ meet minor arc $AC$ of $\Gamma$ at $Q$ and $AC$ at $N\neq C$. Rays $PM$ and $QN$ meet at $X$. Let $Y$ be a point such that $YB$ is tangent to $\omega_{B}$ and $YC$ is tangent to $\omega_{C}$. Show that $A,X,Y$ are collinear.

2016 Poland - Second Round, 2

In acute triangle $ABC$ bisector of angle $BAC$ intersects side $BC$ in point $D$. Bisector of line segment $AD$ intersects circumcircle of triangle $ABC$ in points $E$ and $F$. Show that circumcircle of triangle $DEF$ is tangent to line $BC$.

2021 Adygea Teachers' Geometry Olympiad, 1

Tags: tangent , geometry
a) Two circles of radii $6$ and $24$ are tangent externally. Line $\ell$ touches the first circle at point $A$, and the second at point $B$. Find $AB$. b) The distance between the centers $O_1$ and $O_2$ of circles of radii $6$ and $24$ is $36$. Line $\ell$ touches the first circle at point $A$, and the second at point $B$ and intersects $O_1O_2$. Find $AB$.

1999 North Macedonia National Olympiad, 3

Let the two tangents from a point $A$ outside a circle $k$ touch $k$ at $M$ and $N$. A line $p$ through $A$ intersects $k$ at $B$ and $C$, and $D$ is the midpoint of $MN$. Prove that $MN$ bisects the angle $BDC$

2018-IMOC, G3

Given an acute $\vartriangle ABC$ whose orthocenter is denoted by $H$. A line $\ell$ passes $H$ and intersects $AB,AC$ at $P ,Q$ such that $H$ is the mid-point of $P,Q$. Assume the other intersection of the circumcircle of $\vartriangle ABC$ with the circumcircle of $\vartriangle APQ$ is $X$. Let $C'$ is the symmetric point of $C$ with respect to $X$ and $Y$ is the another intersection of the circumcircle of $\vartriangle ABC$ and $AO$, where O is the circumcenter of $\vartriangle APQ$. Show that $CY$ is tangent to circumcircle of $\vartriangle BCC'$. [img]https://1.bp.blogspot.com/-itG6m1ipAfE/XndLDUtSf7I/AAAAAAAALfc/iZahX6yNItItRSXkDYNofR5hKApyFH84gCK4BGAYYCw/s1600/2018%2Bimoc%2Bg3.png[/img]

Swiss NMO - geometry, 2004.1

Let $\Gamma$ be a circle and $P$ a point outside of $\Gamma$ . A tangent from $P$ to the circle intersects it in $A$. Another line through $P$ intersects $\Gamma$ at the points $B$ and $C$. The bisector of $\angle APB$ intersects $AB$ at $D$ and $AC$ at $E$. Prove that the triangle $ADE$ is isosceles.

2021 Taiwan TST Round 3, 2

Let $ABC$ be a triangle with incenter $I$ and circumcircle $\Gamma$. Circles $\omega_{B}$ passing through $B$ and $\omega_{C}$ passing through $C$ are tangent at $I$. Let $\omega_{B}$ meet minor arc $AB$ of $\Gamma$ at $P$ and $AB$ at $M\neq B$, and let $\omega_{C}$ meet minor arc $AC$ of $\Gamma$ at $Q$ and $AC$ at $N\neq C$. Rays $PM$ and $QN$ meet at $X$. Let $Y$ be a point such that $YB$ is tangent to $\omega_{B}$ and $YC$ is tangent to $\omega_{C}$. Show that $A,X,Y$ are collinear.

1969 IMO Longlists, 47

$C$ is a point on the semicircle diameter $AB$, between $A$ and $B$. $D$ is the foot of the perpendicular from $C$ to $AB$. The circle $K_1$ is the incircle of $ABC$, the circle $K_2$ touches $CD,DA$ and the semicircle, the circle $K_3$ touches $CD,DB$ and the semicircle. Prove that $K_1,K_2$ and $K_3$ have another common tangent apart from $AB$.

2021 South Africa National Olympiad, 4

Let $ABC$ be a triangle with $\angle ABC \neq 90^\circ$ and $AB$ its shortest side. Denote by $H$ the intersection of the altitudes of triangle $ABC$. Let $K$ be the circle through $A$ with centre $B$. Let $D$ be the other intersection of $K$ and $AC$. Let $K$ intersect the circumcircle of $BCD$ again at $E$. If $F$ is the intersection of $DE$ and $BH$, show that $BD$ is tangent to the circle through $D$, $F$, and $H$.

1999 Denmark MO - Mohr Contest, 1

In a coordinate system, a circle with radius $7$ and center is on the y-axis placed inside the parabola with equation $y = x^2$ , so that it just touches the parabola in two points. Determine the coordinate set for the center of the circle.

2007 Balkan MO Shortlist, G1

Let $\omega$ be a circle with center $O$ and let $A$ be a point outside $\omega$. The tangents from $A$ touch $\omega$ at points $B$, and $C$. Let $D$ be the point at which the line $AO$ intersects the circle such that $O$ is between $A$ and $D$. Denote by $X$ the orthogonal projection of $B$ onto $CD$, by $Y$ the midpoint of the segment $BX$ and by $Z$ the second point of intersection of the line $DY$ with $\omega$. Prove that $ZA$ and $ZC$ are perpendicular to each other.

2016 Sharygin Geometry Olympiad, P17

Let $D$ be an arbitrary point on side $BC$ of triangle $ABC$. Circles $\omega_1$ and $\omega_2$ pass through $A$ and $D$ in such a way that $BA$ touches $\omega_1$ and $CA$ touches $\omega_2$. Let $BX$ be the second tangent from $B$ to $\omega_1$, and $CY$ be the second tangent from $C$ to $\omega_2$. Prove that the circumcircle of triangle $XDY$ touches $BC$.

2018 Saudi Arabia GMO TST, 3

Let $C$ be a point lies outside the circle $(O)$ and $CS, CT$ are tangent lines of $(O)$. Take two points $A, B$ on $(O)$ with $M$ is the midpoint of the minor arc $AB$ such that $A, B, M$ differ from $S, T$. Suppose that $MS, MT$ cut line $AB$ at $E, F$. Take $X \in OS$ and $Y \in OT$ such that $EX, FY$ are perpendicular to $AB$. Prove that $X Y$ and $C M$ are perpendicular.

2007 Oral Moscow Geometry Olympiad, 6

Tags: tangent , geometry , fixed
A point $P$ is fixed inside the circle. $C$ is an arbitrary point of the circle, $AB$ is a chord passing through point $B$ and perpendicular to the segment $BC$. Points $X$ and $Y$ are projections of point $B$ onto lines $AC$ and $BC$. Prove that all line segments $XY$ are tangent to the same circle. (A. Zaslavsky)

1949-56 Chisinau City MO, 45

Determine the locus of points, from which the tangent segments to two given circles are equal.

2005 iTest, 21

Tags: geometry , tangent
Two circles have a common internal tangent of length $17$ and a common external tangent of length $25$. Find the product of the radii of the two circles.

2022 Bundeswettbewerb Mathematik, 3

A circle $k$ touches a larger circle $K$ from inside in a point $P$. Let $Q$ be point on $k$ different from $P$. The line tangent to $k$ at $Q$ intersects $K$ in $A$ and $B$. Show that the line $PQ$ bisects $\angle APB$.