This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 353

2009 Belarus Team Selection Test, 1

Two equal circles $S_1$ and $S_2$ meet at two different points. The line $\ell$ intersects $S_1$ at points $A,C$ and $S_2$ at points $B,D$ respectively (the order on $\ell$: $A,B,C,D$) . Define circles $\Gamma_1$ and $\Gamma_2$ as follows: both $\Gamma_1$ and $\Gamma_2$ touch $S_1$ internally and $S_2$ externally, both $\Gamma_1$ and $\Gamma_2$ line $\ell$, $\Gamma_1$ and $\Gamma_2$ lie in the different halfplanes relatively to line $\ell$. Suppose that $\Gamma_1$ and $\Gamma_2$ touch each other. Prove that $AB=CD$. I. Voronovich

2011 Dutch IMO TST, 3

Let $\Gamma_1$ and $\Gamma_2$ be two intersecting circles with midpoints respectively $O_1$ and $O_2$, such that $\Gamma_2$ intersects the line segment $O_1O_2$ in a point $A$. The intersection points of $\Gamma_1$ and $\Gamma_2$ are $C$ and $D$. The line $AD$ intersects $\Gamma_1$ a second time in $S$. The line $CS$ intersects $O_1O_2$ in $F$. Let $\Gamma_3$ be the circumcircle of triangle $AD$. Let $E$ be the second intersection point of $\Gamma_1$ and $\Gamma_3$. Prove that $O_1E$ is tangent to $\Gamma_3$.

1963 Dutch Mathematical Olympiad, 1

In a plane are given a straight line $\ell$ and a point $P$ not located on $\ell$. Is there a circle in this plane such that there exist more than three different points $S$ on $\ell$ with the property that the perpendicular bisector of $PS$ is tangent to the circle ? Explain the answer.

2004 Tournament Of Towns, 4

Two circles intersect in points $A$ and $B$. Their common tangent nearer $B$ touches the circles at points $E$ and $F$, and intersects the extension of $AB$ at the point $M$. The point $K$ is chosen on the extention of $AM$ so that $KM = MA$. The line $KE$ intersects the circle containing $E$ again at the point $C$. The line $KF$ intersects the circle containing $F$ again at the point $D$. Prove that the points $A, C$ and $D$ are collinear.

2010 Estonia Team Selection Test, 4

In an acute triangle $ABC$ the angle $C$ is greater than the angle $A$. Let $AE$ be a diameter of the circumcircle of the triangle. Let the intersection point of the ray $AC$ and the tangent of the circumcircle through the vertex $B$ be $K$. The perpendicular to $AE$ through $K$ intersects the circumcircle of the triangle $BCK$ for the second time at point $D$. Prove that $CE$ bisects the angle $BCD$.

Geometry Mathley 2011-12, 12.3

Points $E,F$ are chosen on the sides $CA,AB$ of triangle $ABC$. Let $(K)$ be the circumcircle of triangle $AEF$. The tangents at $E, F$ of $(K)$ intersect at $T$ . Prove that (a) $T$ is on $BC$ if and only if $BE$ meets $CF$ at a point on the circle $(K)$, (b) $EF, PQ,BC$ are concurrent given that $BE$ meets $FT$ at $M, CF$ meets $ET$ at $N, AM$ and $AN$ intersects $(K)$ at $P,Q$ distinct from $A$. Trần Quang Hùng

2022 Durer Math Competition Finals, 1

To the exterior of side $AB$ of square $ABCD$, we have drawn the regular triangle $ABE$. Point $A$ reflected on line $BE$ is $F$, and point $E$ reflected on line $BF$ is $G$. Let the perpendicular bisector of segment $FG$ meet segment $AD$ at $X$. Show that the circle centered at $X$ with radius $XA$ touches line$ FB$.

2001 Croatia Team Selection Test, 2

Circles $k_1$ and $k_2$ intersect at $P$ and $Q$, and $A$ and $B$ are the tangency points of their common tangent that is closer to $P$ (where $A$ is on $k_1$ and $B$ on $k_2$). The tangent to $k_1$ at $P$ intersects $k_2$ again at $C$. The lines $AP$ and $BC$ meet at $R$. Show that the lines $BP$ and $BC$ are tangent to the circumcircle of triangle $PQR$.

Novosibirsk Oral Geo Oly IX, 2020.7

Tags: tangent , cyclic , geometry
The quadrilateral $ABCD$ is known to be inscribed in a circle, and that there is a circle with center on side $AD$ tangent to the other three sides. Prove that $AD = AB + CD$.

2006 Sharygin Geometry Olympiad, 10.3

Given a circle and a point $P$ inside it, different from the center. We consider pairs of circles tangent to the given internally and to each other at point $P$. Find the locus of the points of intersection of the common external tangents to these circles.

2011 Sharygin Geometry Olympiad, 9

Let $H$ be the orthocenter of triangle $ABC$. The tangents to the circumcircles of triangles $CHB$ and $AHB$ at point $H$ meet $AC$ at points $A_1$ and $C_1$ respectively. Prove that $A_1H = C_1H$.

2021-IMOC, G7

The incircle of triangle $ABC$ tangents $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. Let the tangents of $E$, $F$ with respect to $\odot(AEF)$ intersect at $P$, and $X$ be a point on $BC$ such that $EF$, $DP$, $AX$ are concurrent. Define $Q$, $Y$ and $R$, $Z$ similarly. Show that $X$, $Y$, $Z$ are collinear.

2018 Balkan MO Shortlist, G2

Let $ABC$ be a triangle inscribed in circle $\Gamma$ with center $O$. Let $H$ be the orthocenter of triangle $ABC$ and let $K$ be the midpoint of $OH$. Tangent of $\Gamma$ at $B$ intersects the perpendicular bisector of $AC$ at $L$. Tangent of $\Gamma$ at $C$ intersects the perpendicular bisector of $AB$ at $M$. Prove that $AK$ and $LM$ are perpendicular. by Michael Sarantis, Greece

2006 Tournament of Towns, 4

A circle of radius $R$ is inscribed into an acute triangle. Three tangents to the circle split the triangle into three right angle triangles and a hexagon that has perimeter $Q$. Find the sum of diameters of circles inscribed into the three right triangles. (6)

Kyiv City MO Seniors Round2 2010+ geometry, 2021.11.3.1

Two circles $k_1$ and $k_2$ with radii $r_1$ and $r_2$ have no common points. The line$ AB$ is a common internal tangent, and the line $CD$ is a common external tangent to these circles, where $A, C \in k_1$ and $B, D \in k_2$. Knowing that $AB=12$ and $CD =16$, find the value of the product $r_1r_2$.

2010 Sharygin Geometry Olympiad, 4

Circles $\omega_1$ and $\omega_2$ inscribed into equal angles $X_1OY$ and $Y OX_2$ touch lines $OX_1$ and $OX_2$ at points $A_1$ and $A_2$ respectively. Also they touch $OY$ at points $B_1$ and $B_2$. Let $C_1$ be the second common point of $A_1B_2$ and $\omega_1, C_2$ be the second common point of $A_2B_1$ and $\omega_2$. Prove that $C_1C_2$ is the common tangent of two circles.

1989 Dutch Mathematical Olympiad, 2

Tags: geometry , tangent , square
Given is a square $ABCD$ with $E \in BC$, arbitrarily. On $CD$ lies the point $F$ is such that $\angle EAF = 45^o$. Prove that $EF$ is tangent to the circle with center $A$ and radius $AB$.

2012 Korea Junior Math Olympiad, 5

Let $ABCD$ be a cyclic quadrilateral inscirbed in a circle $O$ ($AB> AD$), and let $E$ be a point on segment $AB$ such that $AE = AD$. Let $AC \cap DE = F$, and $DE \cap O = K(\ne D)$. The tangent to the circle passing through $C,F,E$ at $E$ hits $AK$ at $L$. Prove that $AL = AD$ if and only if $\angle KCE = \angle ALE$.

2015 India PRMO, 20

$20.$ The circle $\omega$ touches the circle $\Omega$ internally at point $P.$ The centre $O$ of $\Omega$ is outside $\omega.$ Let $XY$ be a diameter of $\Omega$ which is also tangent to $\omega.$ Assume $PY>PX.$ Let $PY$ intersect $\omega$ at $z.$ If $YZ=2PZ,$ what is the magnitude of $\angle{PYX}$ in degrees $?$

2008 Thailand Mathematical Olympiad, 1

Let $P$ be a point outside a circle $\omega$. The tangents from $P$ to $\omega$ are drawn touching $\omega$ at points $A$ and $B$. Let $M$ and $N$ be the midpoints of $AP$ and $AB$, respectively. Line $MN$ is extended to cut $\omega$ at $C$ so that $N$ lies between $M$ and $C$. Line $PC$ intersects $\omega$ again at $D$, and lines $ND$ and $PB$ intersect at $O$. Prove that $MNOP$ is a rhombus.

2024 Dutch IMO TST, 1

Let $ABC$ be a triangle with orthocenter $H$ and circumcircle $\Gamma$. Let $D$ be the reflection of $A$ in $B$ and let $E$ the reflection of $A$ in $C$. Let $M$ be the midpoint of segment $DE$. Show that the tangent to $\Gamma$ in $A$ is perpendicular to $HM$.

2017 Switzerland - Final Round, 5

Let $ABC$ be a triangle with $AC> AB$. Let $P$ be the intersection of $BC$ and the tangent through $A$ around the triangle $ABC$. Let $Q$ be the point on the straight line $AC$, so that $AQ = AB$ and $A$ is between $C$ and $Q$. Let $X$ and $Y$ be the center of $BQ$ and $AP$. Let $R$ be the point on $AP$ so that $AR = BP$ and $R$ is between $A$ and $P$. Show that $BR = 2XY$.

2025 Sharygin Geometry Olympiad, 5

Tags: geometry , tangent
Let $M$ be the midpoint of the cathetus $AC$ of a right-angled triangle $ABC$ $(\angle C=90^{\circ})$. The perpendicular from $M$ to the bisector of angle $ABC$ meets $AB$ at point $N$. Prove that the circumcircle of triangle $ANM$ touches the bisector of angle $ABC$. Proposed by:D.Shvetsov

1997 Slovenia Team Selection Test, 1

Circles $K_1$ and $K_2$ are externally tangent to each other at $A$ and are internally tangent to a circle $K$ at $A_1$ and $A_2$ respectively. The common tangent to $K_1$ and $K_2$ at $A$ meets $K$ at point $P$. Line $PA_1$ meets $K_1$ again at $B_1$ and $PA_2$ meets $K_2$ again at $B_2$. Show that $B_1B_2$ is a common tangent of $K_1$ and $K_2$.

2023 Olimphíada, 1

Let $ABC$ be a triangle and $H$ and $D$ be the feet of the height and bisector relative to $A$ in $BC$, respectively. Let $E$ be the intersection of the tangent to the circumcircle of $ABC$ by $A$ with $BC$ and $M$ be the midpoint of $AD$. Finally, let $r$ be the line perpendicular to $BC$ that passes through $M$. Show that $r$ is tangent to the circumcircle of $AHE$.