Found problems: 3349
1964 IMO Shortlist, 2
Suppose $a,b,c$ are the sides of a triangle. Prove that \[ a^2(b+c-a)+b^2(a+c-b)+c^2(a+b-c) \leq 3abc \]
2004 Iran MO (2nd round), 1
$ABC$ is a triangle and $\angle A=90^{\circ}$. Let $D$ be the meet point of the interior bisector of $\angle A$ and $BC$. And let $I_a$ be the $A-$excenter of $\triangle ABC$. Prove that:
\[\frac{AD}{DI_a}\leq\sqrt{2}-1.\]
1952 Moscow Mathematical Olympiad, 231
Prove that for arbitrary fixed $a_1, a_2,.. , a_{31}$ the sum $\cos 32x + a_{31} \cos 31x +... + a_2 cos 2x + a_1 \cos x$ can take both positive and negative values as $x$ varies.
2015 China National Olympiad, 2
Let $ A, B, D, E, F, C $ be six points lie on a circle (in order) satisfy $ AB=AC $ .
Let $ P=AD \cap BE, R=AF \cap CE, Q=BF \cap CD, S=AD \cap BF, T=AF \cap CD $ .
Let $ K $ be a point lie on $ ST $ satisfy $ \angle QKS=\angle ECA $ .
Prove that $ \frac{SK}{KT}=\frac{PQ}{QR} $
2001 Romania National Olympiad, 2
In the tetrahedron $OABC$ we denote by $\alpha,\beta,\gamma$ the measures of the angles $\angle BOC,\angle COA,$ and $\angle AOB$, respectively. Prove the inequality
\[\cos^2\alpha+\cos^2\beta+\cos^2\gamma<1+2\cos\alpha\cos\beta\cos\gamma \]
1974 Miklós Schweitzer, 7
Given a positive integer $ m$ and $ 0 < \delta <\pi$, construct a trigonometric polynomial $ f(x)\equal{}a_0\plus{} \sum_{n\equal{}1}^m (a_n \cos nx\plus{}b_n \sin nx)$ of degree $ m$ such that $ f(0)\equal{}1, \int_{ \delta \leq |x| \leq \pi} |f(x)|dx \leq c/m,$ and $ \max_{\minus{}\pi \leq x \leq \pi}|f'(x)| \leq c/{\delta}$, for some universal constant $ c$.
[i]G. Halasz[/i]
2012 HMNT, 8
Let $n$ be the $200$th smallest positive real solution to the equation $x- \frac{\pi}{2} =\ tan x$. Find the greatest integer that does not exceed $\frac{n}{2}$.
1977 Chisinau City MO, 153
Prove that the number $\tan \frac{\pi}{3^n}$ is irrational for any natural $n$.
2004 Vietnam National Olympiad, 1
The sequence $ (x_n)^{\infty}_{n\equal{}1}$ is defined by $ x_1 \equal{} 1$ and $ x_{n\plus{}1} \equal{}\frac{(2 \plus{} \cos 2\alpha)x_n \minus{} \cos^2\alpha}{(2 \minus{} 2 \cos 2\alpha)x_n \plus{} 2 \minus{} \cos 2\alpha}$, for all $ n \in\mathbb{N}$, where $ \alpha$ is a given real parameter. Find all values of $ \alpha$ for which the sequence $ (y_n)$ given by $ y_n \equal{} \sum_{k\equal{}1}^{n}\frac{1}{2x_k\plus{}1}$ has a finite limit when $ n \to \plus{}\infty$ and find that limit.
1977 AMC 12/AHSME, 26
Let $a,b,c,$ and $d$ be the lengths of sides $MN,NP,PQ,$ and $QM$, respectively, of quadrilateral $MNPQ$. If $A$ is the area of $MNPQ$, then
$\textbf{(A) }A=\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is convex}$
$\textbf{(B) }A=\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is a rectangle}$
$\textbf{(C) }A\le\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is a rectangle}$
$\textbf{(D) }A\le\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is a parallelogram}$
$\textbf{(E) }A\ge\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is a parallelogram}$
2010 India Regional Mathematical Olympiad, 1
Let $ABCDEF$ be a convex hexagon in which diagonals $AD, BE, CF$ are concurrent at $O$. Suppose $[OAF]$ is geometric mean of $[OAB]$ and $[OEF]$ and $[OBC]$ is geometric mean of $[OAB]$ and $[OCD]$. Prove that $[OED]$ is the geometric mean of $[OCD]$ and $[OEF]$.
(Here $[XYZ]$ denotes are of $\triangle XYZ$)
2014 Mediterranean Mathematics Olympiad, 4
In triangle $ABC$ let $A'$, $B'$, $C'$ respectively be the midpoints of the sides $BC$, $CA$, $AB$. Furthermore let $L$, $M$, $N$ be the projections of the orthocenter on the three sides $BC$, $CA$, $AB$, and let $k$ denote the nine-point circle. The lines $AA'$, $BB'$, $CC'$ intersect $k$ in the points $D$, $E$, $F$. The tangent lines on $k$ in $D$, $E$, $F$ intersect the lines $MN$, $LN$ and $LM$ in the points $P$, $Q$, $R$.
Prove that $P$, $Q$ and $R$ are collinear.
1990 IMO Longlists, 70
$BC$ is a segment, $M$ is point on $BC$, $A$ is a point such that $A, B, C$ are non-collinear.
(i) Prove that if $M$ is the midpoint of $BC$, then $AB^2 + AC^2 = 2(AM^2 + BM^2).$
(ii) If there exists another point (except $M$) on segment $BC$ satisfying (i), find the region of point $A$ might occupy.
2008 Harvard-MIT Mathematics Tournament, 6
Let $ ABC$ be a triangle with $ \angle A \equal{} 45^\circ$. Let $ P$ be a point on side $ BC$ with $ PB \equal{} 3$ and $ PC \equal{} 5$. Let $ O$ be the circumcenter of $ ABC$. Determine the length $ OP$.
2010 Ukraine Team Selection Test, 7
Denote in the triangle $ABC$ by $h$ the length of the height drawn from vertex $A$, and by $\alpha = \angle BAC$. Prove that the inequality $AB + AC \ge BC \cdot \cos \alpha + 2h \cdot \sin \alpha$ . Are there triangles for which this inequality turns into equality?
2009 AMC 12/AHSME, 24
For how many values of $ x$ in $ [0,\pi]$ is $ \sin^{\minus{}1}(\sin 6x)\equal{}\cos^{\minus{}1}(\cos x)$?
Note: The functions $ \sin^{\minus{}1}\equal{}\arcsin$ and $ \cos^{\minus{}1}\equal{}\arccos$ denote inverse trigonometric functions.
$ \textbf{(A)}\ 3\qquad
\textbf{(B)}\ 4\qquad
\textbf{(C)}\ 5\qquad
\textbf{(D)}\ 6\qquad
\textbf{(E)}\ 7$
2007 F = Ma, 17
A small point-like object is thrown horizontally off of a $50.0$-$\text{m}$ high building with an initial speed of $10.0 \text{ m/s}$. At any point along the trajectory there is an acceleration component tangential to the trajectory and an acceleration component perpendicular to the trajectory. How many seconds after the object is thrown is the tangential component of the acceleration of the object equal to twice the perpendicular component of the acceleration of the object? Ignore air resistance.
$ \textbf{(A)}\ 2.00\text{ s}$
$\textbf{(B)}\ 1.50\text{ s}$
$\textbf{(C)}\ 1.00\text{ s}$
$\textbf{(D)}\ 0.50\text{ s}$
$\textbf{(E)}\ \text{The building is not high enough for this to occur.} $
1992 Vietnam Team Selection Test, 3
Let $ABC$ a triangle be given with $BC = a$, $CA = b$, $AB = c$ ($a \neq b \neq c \neq a$). In plane ($ABC$) take the points $A'$, $B'$, $C'$ such that:
[b]I.[/b] The pairs of points $A$ and $A'$, $B$ and $B'$, $C$ and $C'$ either all lie in one side either all lie in different sides under the lines $BC$, $CA$, $AB$ respectively;
[b]II.[/b] Triangles $A'BC$, $B'CA$, $C'AB$ are similar isosceles triangles.
Find the value of angle $A'BC$ as function of $a, b, c$ such that lengths $AA', BB', CC'$ are not sides of an triangle. (The word "triangle" must be understood in its ordinary meaning: its vertices are not collinear.)
2013 Brazil National Olympiad, 6
The incircle of triangle $ABC$ touches sides $BC, CA$ and $AB$ at points $D, E$ and $F$, respectively. Let $P$ be the intersection of lines $AD$ and $BE$. The reflections of $P$ with respect to $EF, FD$ and $DE$ are $X,Y$ and $Z$, respectively. Prove that lines $AX, BY$ and $CZ$ are concurrent at a point on line $IO$, where $I$ and $O$ are the incenter and circumcenter of triangle $ABC$.
2014 Vietnam National Olympiad, 1
Let $({{x}_{n}}),({{y}_{n}})$ be two positive sequences defined by ${{x}_{1}}=1,{{y}_{1}}=\sqrt{3}$ and
\[ \begin{cases} {{x}_{n+1}}{{y}_{n+1}}-{{x}_{n}}=0 \\ x_{n+1}^{2}+{{y}_{n}}=2 \end{cases} \] for all $n=1,2,3,\ldots$.
Prove that they are converges and find their limits.
1998 AMC 12/AHSME, 26
In quadrilateral $ ABCD$, it is given that $ \angle A \equal{} 120^\circ$, angles $ B$ and $ D$ are right angles, $ AB \equal{} 13$, and $ AD \equal{} 46$. Then $ AC \equal{}$
$ \textbf{(A)}\ 60 \qquad \textbf{(B)}\ 62 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 65 \qquad \textbf{(E)}\ 72$
2014 AIME Problems, 8
Circle $C$ with radius $2$ has diameter $\overline{AB}$. Circle $D$ is internally tangent to circle $C$ at $A$. Circle $E$ is internally tangent to circle $C,$ externally tangent to circle $D,$ and tangent to $\overline{AB}$. The radius of circle $D$ is three times the radius of circle $E$ and can be written in the form $\sqrt{m} - n,$ where $m$ and $n$ are positive integers. Find $m+n$.
2013 Romania Team Selection Test, 1
Let $n$ be a positive integer and let $x_1$, $\ldots$, $x_n$ be positive real numbers. Show that:
\[
\min\left ( x_1,\frac{1}{x_1}+x_2, \cdots,\frac{1}{x_{n-1}}+x_n,\frac{1}{x_n} \right )\leq 2\cos \frac{\pi}{n+2}
\leq\max\left ( x_1,\frac{1}{x_1}+x_2, \cdots,\frac{1}{x_{n-1}}+x_n,\frac{1}{x_n} \right ). \]
2009 Argentina National Olympiad, 3
Isosceles trapezoid $ ABCD$, with $ AB \parallel CD$, is such that there exists a circle $ \Gamma$ tangent to its four sides. Let $ T \equal{} \Gamma \cap BC$, and $ P \equal{} \Gamma \cap AT$ ($ P \neq T$).
If $ \frac{AP}{AT} \equal{} \frac{2}{5}$, compute $ \frac{AB}{CD}$.
2016 India Regional Mathematical Olympiad, 4
Prove that $(4\cos^29^o – 3) (4 \cos^227^o– 3) = \tan 9^o$.