This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2005 Peru MO (ONEM), 1

If $p = (1- \cos x)(1+ \sin x)$ and $q = (1+ \cos x)(1- \sin x)$, write the expression $$\cos^2 x - \cos^4 x - \sin2x + 2$$ in terms of $p$ and $q$.

2004 District Olympiad, 4

In the right trapezoid $ABCD$ with $AB \parallel CD, \angle B = 90^o$ and $AB = 2DC$. At points $A$ and $D$ there is therefore a part of the plane $(ABC)$ perpendicular to the plane of the trapezoid, on which the points $N$ and $P$ are taken, ($AP$ and $PD$ are perpendicular to the plane) such that $DN = a$ and $AP = \frac{a}{2}$ . Knowing that $M$ is the midpoint of the side $BC$ and the triangle $MNP$ is equilateral, determine: a) the cosine of the angle between the planes $MNP$ and $ABC$. b) the distance from $D$ to the plane $MNP$

1998 National Olympiad First Round, 12

In a right triangle, ratio of the hypotenuse over perimeter of the triangle determines an interval on real numbers. Find the midpoint of this interval? $\textbf{(A)}\ \frac{2\sqrt{2} \plus{}1}{4} \qquad\textbf{(B)}\ \frac{\sqrt{2} \plus{}1}{2} \qquad\textbf{(C)}\ \frac{2\sqrt{2} \minus{}1}{4} \\ \qquad\textbf{(D)}\ \sqrt{2} \minus{}1 \qquad\textbf{(E)}\ \frac{\sqrt{2} \minus{}1}{2}$

1978 Romania Team Selection Test, 4

Solve the equation $ \sin x\sin 2x\cdots\sin nx+\cos x\cos 2x\cdots\cos nx =1, $ for $ n\in\mathbb{N} $ and $ x\in\mathbb{R} . $

1960 IMO Shortlist, 3

In a given right triangle $ABC$, the hypotenuse $BC$, of length $a$, is divided into $n$ equal parts ($n$ and odd integer). Let $\alpha$ be the acute angel subtending, from $A$, that segment which contains the mdipoint of the hypotenuse. Let $h$ be the length of the altitude to the hypotenuse fo the triangle. Prove that: \[ \tan{\alpha}=\dfrac{4nh}{(n^2-1)a}. \]

2005 Today's Calculation Of Integral, 20

Calculate the following indefinite integrals. [1] $\int \ln (x^2-1)dx$ [2] $\int \frac{1}{e^x+1}dx$ [3] $\int (ax^2+bx+c)e^{mx}dx\ (abcm\neq 0)$ [4] $\int \left(\tan x+\frac{1}{\tan x}\right)^2 dx$ [5] $\int \sqrt{1-\sin x}dx$

1981 Miklós Schweitzer, 6

Let $ f$ be a strictly increasing, continuous function mapping $ I=[0,1]$ onto itself. Prove that the following inequality holds for all pairs $ x,y \in I$: \[ 1-\cos (xy) \leq \int_0^xf(t) \sin (tf(t))dt + \int_0^y f^{-1}(t) \sin (tf^{-1}(t)) dt .\] [i]Zs. Pales[/i]

2010 AMC 12/AHSME, 8

Triangle $ ABC$ has $ AB \equal{} 2 \cdot AC$. Let $ D$ and $ E$ be on $ \overline{AB}$ and $ \overline{BC}$, respectively, such that $ \angle{BAE} \equal{} \angle{ACD}.$ Let $ F$ be the intersection of segments $ AE$ and $ CD$, and suppose that $ \triangle{CFE}$ is equilateral. What is $ \angle{ACB}$? $ \textbf{(A)}\ 60^{\circ}\qquad \textbf{(B)}\ 75^{\circ}\qquad \textbf{(C)}\ 90^{\circ}\qquad \textbf{(D)}\ 105^{\circ}\qquad \textbf{(E)}\ 120^{\circ}$

2004 South East Mathematical Olympiad, 5

For $\theta\in[0, \dfrac{\pi}{2}]$, the following inequality $\sqrt{2}(2a+3)\cos(\theta-\dfrac{\pi}{4})+\dfrac{6}{\sin\theta+\cos\theta}-2\sin2\theta<3a+6$ is always true. Determine the range of $a$.

2011 Today's Calculation Of Integral, 751

Find $\lim_{n\to\infty}\left(\frac{1}{n}\int_0^n (\sin ^ 2 \pi x)\ln (x+n)dx-\frac 12\ln n\right).$

2014 AIME Problems, 12

Suppose that the angles of $\triangle ABC$ satisfy $\cos(3A) + \cos(3B) + \cos(3C) = 1$. Two sides of the triangle have lengths $10$ and $13$. There is a positive integer $m$ so that the maximum possible length for the remaining side of $\triangle ABC$ is $\sqrt{m}$. Find $m$.

2010 AIME Problems, 14

In right triangle $ ABC$ with right angle at $ C$, $ \angle BAC < 45$ degrees and $ AB \equal{} 4$. Point $ P$ on $ AB$ is chosen such that $ \angle APC \equal{} 2\angle ACP$ and $ CP \equal{} 1$. The ratio $ \frac{AP}{BP}$ can be represented in the form $ p \plus{} q\sqrt{r}$, where $ p,q,r$ are positive integers and $ r$ is not divisible by the square of any prime. Find $ p\plus{}q\plus{}r$.

2010 Romanian Masters In Mathematics, 3

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent. [i]Pavel Kozhevnikov, Russia[/i]

2003 China Team Selection Test, 1

$ABC$ is an acute-angled triangle. Let $D$ be the point on $BC$ such that $AD$ is the bisector of $\angle A$. Let $E, F$ be the feet of perpendiculars from $D$ to $AC,AB$ respectively. Suppose the lines $BE$ and $CF$ meet at $H$. The circumcircle of triangle $AFH$ meets $BE$ at $G$ (apart from $H$). Prove that the triangle constructed from $BG$, $GE$ and $BF$ is right-angled.

2004 Korea - Final Round, 1

An isosceles triangle with $AB=AC$ has an inscribed circle $O$, which touches its sides $BC,CA,AB$ at $K,L,M$ respectively. The lines $OL$ and $KM$ intersect at $N$; the lines $BN$ and $CA$ intersect at $Q$. Let $P$ be the foot of the perpendicular from $A$ on $BQ$. Suppose that $BP=AP+2\cdot PQ$. Then, what values can the ratio $\frac{AB}{BC}$ assume?

Today's calculation of integrals, 766

Let $f(x)$ be a continuous function defined on $0\leq x\leq \pi$ and satisfies $f(0)=1$ and \[\left\{\int_0^{\pi} (\sin x+\cos x)f(x)dx\right\}^2=\pi \int_0^{\pi}\{f(x)\}^2dx.\] Evaluate $\int_0^{\pi} \{f(x)\}^3dx.$

2014 Purple Comet Problems, 12

The vertices of hexagon $ABCDEF$ lie on a circle. Sides $AB = CD = EF = 6$, and sides $BC = DE = F A = 10$. The area of the hexagon is $m\sqrt3$. Find $m$.

2011 AMC 12/AHSME, 25

Triangle $ABC$ has $\angle BAC=60^\circ$, $\angle CBA \le 90^\circ$, $BC=1$, and $AC \ge AB$. Let $H$, $I$, and $O$ be the orthocenter, incenter, and circumcenter of $\triangle ABC$, respectively. Assume that the area of the pentagon $BCOIH$ is the maximum possible. What is $\angle CBA$? $\textbf{(A)}\ 60 ^\circ \qquad \textbf{(B)}\ 72 ^\circ\qquad \textbf{(C)}\ 75 ^\circ \qquad \textbf{(D)}\ 80 ^\circ\qquad \textbf{(E)}\ 90 ^\circ$

2007 Harvard-MIT Mathematics Tournament, 3

The equation $x^2+2x=i$ has two complex solutions. Determine the product of their real parts.

1994 AMC 12/AHSME, 29

Tags: trigonometry
Points $A, B$ and $C$ on a circle of radius $r$ are situated so that $AB=AC, AB>r$, and the length of minor arc $BC$ is $r$. If angles are measured in radians, then $AB/BC=$ [asy] draw(Circle((0,0), 13)); draw((-13,0)--(12,5)--(12,-5)--cycle); dot((-13,0)); dot((12,5)); dot((12,-5)); label("A", (-13,0), W); label("B", (12,5), NE); label("C", (12,-5), SE); [/asy] $ \textbf{(A)}\ \frac{1}{2}\csc{\frac{1}{4}} \qquad\textbf{(B)}\ 2\cos{\frac{1}{2}} \qquad\textbf{(C)}\ 4\sin{\frac{1}{2}} \qquad\textbf{(D)}\ \csc{\frac{1}{2}} \qquad\textbf{(E)}\ 2\sec{\frac{1}{2}} $

2011 China Team Selection Test, 1

Let $H$ be the orthocenter of an acute trangle $ABC$ with circumcircle $\Gamma$. Let $P$ be a point on the arc $BC$ (not containing $A$) of $\Gamma$, and let $M$ be a point on the arc $CA$ (not containing $B$) of $\Gamma$ such that $H$ lies on the segment $PM$. Let $K$ be another point on $\Gamma$ such that $KM$ is parallel to the Simson line of $P$ with respect to triangle $ABC$. Let $Q$ be another point on $\Gamma$ such that $PQ \parallel BC$. Segments $BC$ and $KQ$ intersect at a point $J$. Prove that $\triangle KJM$ is an isosceles triangle.

2007 Today's Calculation Of Integral, 202

Let $a,\ b$ are real numbers such that $a+b=1$. Find the minimum value of the following integral. \[\int_{0}^{\pi}(a\sin x+b\sin 2x)^{2}\ dx \]

1980 IMO, 1

Let $\alpha, \beta$ and $\gamma$ denote the angles of the triangle $ABC$. The perpendicular bisector of $AB$ intersects $BC$ at the point $X$, the perpendicular bisector of $AC$ intersects it at $Y$. Prove that $\tan(\beta) \cdot \tan(\gamma) = 3$ implies $BC= XY$ (or in other words: Prove that a sufficient condition for $BC = XY$ is $\tan(\beta) \cdot \tan(\gamma) = 3$). Show that this condition is not necessary, and give a necessary and sufficient condition for $BC = XY$.

2009 Today's Calculation Of Integral, 512

Evaluate $ \int_0^{n\pi} \sqrt{1\minus{}\sin t}\ dt\ (n\equal{}1,\ 2,\ \cdots).$

2009 ISI B.Stat Entrance Exam, 7

Show that the vertices of a regular pentagon are concyclic. If the length of each side of the pentagon is $x$, show that the radius of the circumcircle is $\frac{x}{2\sin 36^\circ}$.