Found problems: 3349
1974 Canada National Olympiad, 2
Let $ABCD$ be a rectangle with $BC=3AB$. Show that if $P,Q$ are the points on side $BC$ with $BP = PQ = QC$, then \[\angle DBC+\angle DPC = \angle DQC.\]
2012 AMC 12/AHSME, 16
Circle $C_1$ has its center $O$ lying on circle $C_2$. The two circles meet at $X$ and $Y$. Point $Z$ in the exterior of $C_1$ lies on circle $C_2$ and $XZ=13$, $OZ=11$, and $YZ=7$. What is the radius of circle $C_1$?
$ \textbf{(A)}\ 5\qquad\textbf{(B)}\ \sqrt{26}\qquad\textbf{(C)}\ 3\sqrt{3}\qquad\textbf{(D)}\ 2\sqrt{7}\qquad\textbf{(E)}\ \sqrt{30} $
2005 All-Russian Olympiad, 2
We have an acute-angled triangle $ABC$, and $AA',BB'$ are its altitudes. A point $D$ is chosen on the arc $ACB$ of the circumcircle of $ABC$. If $P=AA'\cap BD,Q=BB'\cap AD$, show that the midpoint of $PQ$ lies on $A'B'$.
2007 Junior Balkan Team Selection Tests - Romania, 2
Let $ABCD$ be a trapezium $(AB \parallel CD)$ and $M,N$ be the intersection points of the circles of diameters $AD$ and $BC$. Prove that $O \in MN$, where $O \in AC \cap BD$.
2002 National High School Mathematics League, 12
For all $x\in\mathbb{R}$, $\sin^2 x+a\cos x+a^2\geq 1+\cos x$, then the range value of negative number $a$ is________
2005 France Team Selection Test, 5
Let $ABC$ be a triangle such that $BC=AC+\frac{1}{2}AB$. Let $P$ be a point of $AB$ such that $AP=3PB$.
Show that $\widehat{PAC} = 2 \widehat{CPA}.$
2007 AIME Problems, 15
Let $ABC$ be an equilateral triangle, and let $D$ and $F$ be points on sides $BC$ and $AB$, respectively, with $FA=5$ and $CD=2$. Point $E$ lies on side $CA$ such that $\angle DEF = 60^\circ$. The area of triangle $DEF$ is $14\sqrt{3}$. The two possible values of the length of side $AB$ are $p \pm q\sqrt{r}$, where $p$ and $q$ are rational, and $r$ is an integer not divisible by the square of a prime. Find $r$.
2007 AMC 12/AHSME, 17
Suppose that $ \sin a \plus{} \sin b \equal{} \sqrt {\frac {5}{3}}$ and $ \cos a \plus{} \cos b \equal{} 1.$ What is $ \cos(a \minus{} b)?$
$ \textbf{(A)}\ \sqrt {\frac {5}{3}} \minus{} 1 \qquad \textbf{(B)}\ \frac {1}{3}\qquad \textbf{(C)}\ \frac {1}{2}\qquad \textbf{(D)}\ \frac {2}{3}\qquad \textbf{(E)}\ 1$
2008 Brazil National Olympiad, 3
Let $ x,y,z$ real numbers such that $ x \plus{} y \plus{} z \equal{} xy \plus{} yz \plus{} zx$. Find the minimum value of
\[ {x \over x^2 \plus{} 1} \plus{} {y\over y^2 \plus{} 1} \plus{} {z\over z^2 \plus{} 1}\]
1972 AMC 12/AHSME, 30
[asy]
real h = 7;
real t = asin(6/h)/2;
real x = 6-h*tan(t);
real y = x*tan(2*t);
draw((0,0)--(0,h)--(6,h)--(x,0)--cycle);
draw((x,0)--(0,y)--(6,h));
draw((6,h)--(6,0)--(x,0),dotted);
label("L",(3.75,h/2),W);
label("$\theta$",(6,h-1.5),W);draw(arc((6,h),2,270,270-degrees(t)),Arrow(2mm));
label("6''",(3,0),S);
draw((2.5,-.5)--(0,-.5),Arrow(2mm));
draw((3.5,-.5)--(6,-.5),Arrow(2mm));
draw((0,-.25)--(0,-.75));draw((6,-.25)--(6,-.75));
//Credit to Zimbalono for the diagram[/asy]
A rectangular piece of paper $6$ inches wide is folded as in the diagram so that one corner touches the opposite side. The length in inches of the crease $L$ in terms of angle $\theta$ is
$\textbf{(A) }3\sec ^2\theta\csc\theta\qquad\textbf{(B) }6\sin\theta\sec\theta\qquad\textbf{(C) }3\sec\theta\csc\theta\qquad\textbf{(D) }6\sec\theta\csc ^2\theta\qquad \textbf{(E) }\text{None of these}$
2006 Turkey MO (2nd round), 2
$ABC$ be a triangle. Its incircle touches the sides $CB, AC, AB$ respectively at $N_{A},N_{B},N_{C}$. The orthic triangle of $ABC$ is $H_{A}H_{B}H_{C}$ with $H_{A}, H_{B}, H_{C}$ are respectively on $BC, AC, AB$. The incenter of $AH_{C}H_{B}$ is $I_{A}$; $I_{B}$ and $I_{C}$ were defined similarly.
Prove that the hexagon $I_{A}N_{B}I_{C}N_{A}I_{B}N_{C}$ has all sides equal.
2020 MMATHS, I12
Let $p(x)$ be the monic cubic polynomial with roots $\sin^2(1^{\circ})$, $\sin^2(3^{\circ})$, and $\sin^2(9^{\circ})$. Suppose that $p\left(\frac{1}{4}\right)=\frac{\sin(a^{\circ})}{n\sin(b^{\circ})}$, where $0 <a,b \le 90$ and $a,b,n$ are positive integers. What is $a+b+n$?
[i]Proposed by Andrew Yuan[/i]
2010 National Olympiad First Round, 5
Let $ABCD$ be a convex quadrilateral such that $|AB|=10$, $|CD|=3\sqrt 6$, $m(\widehat{ABD})=60^\circ$, $m(\widehat{BDC})=45^\circ$, and $|BD|=13+3\sqrt 3$. What is $|AC|$ ?
$ \textbf{(A)}\ 20
\qquad\textbf{(B)}\ 18
\qquad\textbf{(C)}\ 16
\qquad\textbf{(D)}\ 14
\qquad\textbf{(E)}\ 12
$
2004 Peru MO (ONEM), 3
Let $x,y,z$ be positive real numbers, less than $\pi$, such that:
$$\cos x + \cos y + \cos z = 0$$
$$\cos 2x + \cos 2 y + \cos 2z = 0$$
$$\cos 3x + \cos 3y + \cos 3z = 0$$
Find all the values that $\sin x + \sin y + \sin z$ can take.
2020 Purple Comet Problems, 14
Let $x$ be a real number such that $3 \sin^4 x -2 \cos^6 x = -\frac{17}{25}$ . Then $3 \cos^4 x - 2 \sin^6 x = \frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $10m + n$.
2021 Oral Moscow Geometry Olympiad, 1
Points $A,B,C,D$ have been marked on checkered paper (see fig.). Find the tangent of the angle $ABD$.
[img]https://cdn.artofproblemsolving.com/attachments/6/1/eeb98ccdee801361f9f66b8f6b2da4714e659f.png[/img]
2002 China Team Selection Test, 1
In acute triangle $ ABC$, show that:
$ \sin^3{A}\cos^2{(B \minus{} C)} \plus{} \sin^3{B}\cos^2{(C \minus{} A)} \plus{} \sin^3{C}\cos^2{(A \minus{} B)} \leq 3\sin{A} \sin{B} \sin{C}$
and find out when the equality holds.
2012 South East Mathematical Olympiad, 3
In $\triangle ABC$, point $D$ lies on side $AC$ such that $\angle ABD=\angle C$. Point $E$ lies on side $AB$ such that $BE=DE$. $M$ is the midpoint of segment $CD$. Point $H$ is the foot of the perpendicular from $A$ to $DE$. Given $AH=2-\sqrt{3}$ and $AB=1$, find the size of $\angle AME$.
2001 National Olympiad First Round, 21
Let $b$ be the length of the largest diagonal and $c$ be the length of the smallest diagonal of a regular nonagon with side length $a$. Which one of the followings is true?
$
\textbf{(A)}\ b=\dfrac{a+c}2
\qquad\textbf{(B)}\ b=\sqrt {ac}
\qquad\textbf{(C)}\ b^2=\dfrac{a^2+c^2}2 \\
\textbf{(D)}\ c=a+b
\qquad\textbf{(E)}\ c^2=a^2+b^2
$
1986 China Team Selection Test, 1
Given a square $ABCD$ whose side length is $1$, $P$ and $Q$ are points on the sides $AB$ and $AD$. If the perimeter of $APQ$ is $2$ find the angle $PCQ$.
2013 AMC 12/AHSME, 16
Let $ABCDE$ be an equiangular convex pentagon of perimeter $1$. The pairwise intersections of the lines that extend the side of the pentagon determine a five-pointed star polygon. Let $s$ be the perimeter of the star. What is the difference between the maximum and minimum possible perimeter of $s$?
$ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ \frac{1}{2} \qquad\textbf{(C)}\ \frac{\sqrt{5}-1}{2} \qquad\textbf{(D)}\ \frac{\sqrt{5}+1}{2} \qquad\textbf{(E)}\ \sqrt{5} $
2008 Junior Balkan Team Selection Tests - Romania, 3
Let $ ABC$ be an acute-angled triangle. We consider the equilateral triangle $ A'UV$, where $ A' \in (BC)$, $ U\in (AC)$ and $ V\in(AB)$ such that $ UV \parallel BC$. We define the points $ B',C'$ in the same way. Prove that $ AA'$, $ BB'$ and $ CC'$ are concurrent.
2014 USAJMO, 6
Let $ABC$ be a triangle with incenter $I$, incircle $\gamma$ and circumcircle $\Gamma$. Let $M,N,P$ be the midpoints of sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ and let $E,F$ be the tangency points of $\gamma$ with $\overline{CA}$ and $\overline{AB}$, respectively. Let $U,V$ be the intersections of line $EF$ with line $MN$ and line $MP$, respectively, and let $X$ be the midpoint of arc $BAC$ of $\Gamma$.
(a) Prove that $I$ lies on ray $CV$.
(b) Prove that line $XI$ bisects $\overline{UV}$.
1982 AMC 12/AHSME, 23
The lengths of the sides of a triangle are consescutive integers, and the largest angle is twice the smallest angle. The cosine of the smallest angle is
$\textbf {(A) } \frac 34 \qquad \textbf {(B) } \frac{7}{10} \qquad \textbf {(C) } \frac 23 \qquad \textbf {(D) } \frac{9}{14} \qquad \textbf {(E) } \text{none of these}$
2006 District Olympiad, 1
On the plane of triangle $ABC$ with $\angle BAC = 90^\circ$ we raise perpendicular lines in $A$ and $B$, on the same side of the plane. On these two perpendicular lines we consider the points $M$ and $N$ respectively such that $BN < AM$. Knowing that $AC = 2a$, $AB = a\sqrt 3$, $AM=a$ and that the plane $MNC$ makes an angle of $30^\circ$ with the plane $ABC$ find
a) the area of the triangle $MNC$;
b) the distance from $B$ to the plane $MNC$.