This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2011 Today's Calculation Of Integral, 676

Let $f(x)=\cos ^ 4 x+3\sin ^ 4 x$. Evaluate $\int_0^{\frac{\pi}{2}} |f'(x)|dx$. [i]2011 Tokyo University of Science entrance exam/Management[/i]

1996 China National Olympiad, 1

Let $\triangle{ABC}$ be a triangle with orthocentre $H$. The tangent lines from $A$ to the circle with diameter $BC$ touch this circle at $P$ and $Q$. Prove that $H,P$ and $Q$ are collinear.

1998 Turkey Team Selection Test, 2

Let the sequence $(a_{n})$ be defined by $a_{1} = t$ and $a_{n+1} = 4a_{n}(1 - a_{n})$ for $n \geq 1$. How many possible values of t are there, if $a_{1998} = 0$?

2019 Jozsef Wildt International Math Competition, W. 66

If $0 < a \leq b$ then$$\frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{2(b^2 - a^2)}{(a^2+2)(b^2+2)}\right)\leq \int \limits_a^b \frac{(x^2+1)(x^2+x+1)}{(x^3 + x^2 + 1) (x^3 + x + 1)}dx\leq \frac{4}{\sqrt{3}}\tan^{-1}\left(\frac{(b-a)\sqrt{3}}{a+b+2(1+ab)}\right)$$

2006 AMC 12/AHSME, 16

Regular hexagon $ ABCDEF$ has vertices $ A$ and $ C$ at $ (0,0)$ and $ (7,1)$, respectively. What is its area? $ \textbf{(A) } 20\sqrt {3} \qquad \textbf{(B) } 22\sqrt {3} \qquad \textbf{(C) } 25\sqrt {3} \qquad \textbf{(D) } 27\sqrt {3} \qquad \textbf{(E) } 50$

Today's calculation of integrals, 850

Evaluate \[\int_0^{\pi} \{(1-x\sin 2x)e^{\cos ^2 x}+(1+x\sin 2x)e^{\sin ^ 2 x}\}\ dx.\]

2011 China Girls Math Olympiad, 8

The $A$-excircle $(O)$ of $\triangle ABC$ touches $BC$ at $M$. The points $D,E$ lie on the sides $AB,AC$ respectively such that $DE\parallel BC$. The incircle $(O_1)$ of $\triangle ADE$ touches $DE$ at $N$. If $BO_1\cap DO=F$ and $CO_1\cap EO=G$, prove that the midpoint of $FG$ lies on $MN$.

1988 IMO Longlists, 79

Let $ ABC$ be an acute-angled triangle. Let $ L$ be any line in the plane of the triangle $ ABC$. Denote by $ u$, $ v$, $ w$ the lengths of the perpendiculars to $ L$ from $ A$, $ B$, $ C$ respectively. Prove the inequality $ u^2\cdot\tan A \plus{} v^2\cdot\tan B \plus{} w^2\cdot\tan C\geq 2\cdot S$, where $ S$ is the area of the triangle $ ABC$. Determine the lines $ L$ for which equality holds.

2009 Jozsef Wildt International Math Competition, W. 20

Tags: trigonometry
If $x \in \mathbb{R}\backslash \left \{\frac{k\pi}{2}\ |\ k\in \mathbb{Z} \right \}$, then $$\left (\sum \limits_{0\leq j<k\leq n} \sin (2(j+k)x)\right )^2 + \left (\sum \limits_{0\leq j<k\leq n} \cos (2(j+k)x)\right )^2 = \frac{\sin ^2 nx \sin ^2 (n+1)x}{\sin ^2x \sin^22x}$$

Today's calculation of integrals, 857

Let $f(x)=\lim_{n\to\infty} (\cos ^ n x+\sin ^ n x)^{\frac{1}{n}}$ for $0\leq x\leq \frac{\pi}{2}.$ (1) Find $f(x).$ (2) Find the volume of the solid generated by a rotation of the figure bounded by the curve $y=f(x)$ and the line $y=1$ around the $y$-axis.

2012 ELMO Shortlist, 5

Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ and $E$ be points on side $BC$ such that $BD=CE$ and $D$ lies between $B$ and $E$. Suppose there exists a point $P$ inside $ABC$ such that $PD\parallel AE$ and $\angle PAB=\angle EAC$. Prove that $\angle PBA=\angle PCA$. [i]Calvin Deng.[/i]

1996 North Macedonia National Olympiad, 3

Prove that if $\alpha, \beta, \gamma$ are angles of a triangle, then $\frac{1}{\sin \alpha}+ \frac{1}{\sin \beta} \ge \frac{8}{ 3+2 \ cos\gamma}$ .

Today's calculation of integrals, 853

Let $0<a<\frac {\pi}2.$ Find $\lim_{a\rightarrow +0} \frac{1}{a^3}\int_0^a \ln\ (1+\tan a\tan x)\ dx.$

2009 Today's Calculation Of Integral, 401

For real number $ a$ with $ |a|>1$, evaluate $ \int_0^{2\pi} \frac{d\theta}{(a\plus{}\cos \theta)^2}$.

2013 NIMO Problems, 2

In $\triangle ABC$, points $E$ and $F$ lie on $\overline{AC}, \overline{AB}$, respectively. Denote by $P$ the intersection of $\overline{BE}$ and $\overline{CF}$. Compute the maximum possible area of $\triangle ABC$ if $PB = 14$, $PC = 4$, $PE = 7$, $PF = 2$. [i]Proposed by Eugene Chen[/i]

1997 India National Olympiad, 1

Let $ABCD$ be a parallelogram. Suppose a line passing through $C$ and lying outside the parallelogram meets $AB$ and $AD$ produced at $E$ and $F$ respectively. Show that \[ AC^2 + CE \cdot CF = AB \cdot AE + AD \cdot AF . \]

2014 France Team Selection Test, 2

Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.

1969 IMO Shortlist, 26

$(GBR 3)$ A smooth solid consists of a right circular cylinder of height $h$ and base-radius $r$, surmounted by a hemisphere of radius $r$ and center $O.$ The solid stands on a horizontal table. One end of a string is attached to a point on the base. The string is stretched (initially being kept in the vertical plane) over the highest point of the solid and held down at the point $P$ on the hemisphere such that $OP$ makes an angle $\alpha$ with the horizontal. Show that if $\alpha$ is small enough, the string will slacken if slightly displaced and no longer remain in a vertical plane. If then pulled tight through $P$, show that it will cross the common circular section of the hemisphere and cylinder at a point $Q$ such that $\angle SOQ = \phi$, $S$ being where it initially crossed this section, and $\sin \phi = \frac{r \tan \alpha}{h}$.

2010 Korea Junior Math Olympiad, 5

If reals $x, y, z $ satises $tan x + tan y + tan z = 2$ and $0 < x, y,z < \frac{\pi}{2}.$ Prove that $$sin^2 x + sin^2 y + sin^2 z < 1.$$

1980 AMC 12/AHSME, 12

The equations of $L_1$ and $L_2$ are $y=mx$ and $y=nx$, respectively. Suppose $L_1$ makes twice as large of an angle with the horizontal (measured counterclockwise from the positive x-axis ) as does $L_2$, and that $L_1$ has 4 times the slope of $L_2$. If $L_1$ is not horizontal, then $mn$ is $\text{(A)} \ \frac{\sqrt{2}}{2} \qquad \text{(B)} \ -\frac{\sqrt{2}}{2} \qquad \text{(C)} \ 2 \qquad \text{(D)} \ -2 \qquad \text{(E)} \ \text{not uniquely determined}$

2008 Harvard-MIT Mathematics Tournament, 5

([b]4[/b]) Let $ f(x) \equal{} \sin^6\left(\frac {x}{4}\right) \plus{} \cos^6\left(\frac {x}{4}\right)$ for all real numbers $ x$. Determine $ f^{(2008)}(0)$ (i.e., $ f$ differentiated $ 2008$ times and then evaluated at $ x \equal{} 0$).

II Soros Olympiad 1995 - 96 (Russia), 10.1

Find the largest and smallest value of the function $$y=\sqrt{7+5\cos x}-\cos x.$$

2007 Today's Calculation Of Integral, 229

Find $ \lim_{a\rightarrow \plus{} \infty} \frac {\int_0^a \sin ^ 4 x\ dx}{a}$.

2010 AMC 12/AHSME, 22

Let $ ABCD$ be a cyclic quadrilateral. The side lengths of $ ABCD$ are distinct integers less than $ 15$ such that $ BC\cdot CD\equal{}AB\cdot DA$. What is the largest possible value of $ BD$? $ \textbf{(A)}\ \sqrt{\frac{325}{2}} \qquad \textbf{(B)}\ \sqrt{185} \qquad \textbf{(C)}\ \sqrt{\frac{389}{2}} \qquad \textbf{(D)}\ \sqrt{\frac{425}{2}} \qquad \textbf{(E)}\ \sqrt{\frac{533}{2}}$

1994 Spain Mathematical Olympiad, 4

In a triangle $ABC$ with $ \angle A = 36^o$ and $AB = AC$, the bisector of the angle at $C$ meets the oposite side at $D$. Compute the angles of $\triangle BCD$. Express the length of side $BC$ in terms of the length $b$ of side $AC$ without using trigonometric functions.