Found problems: 3349
2002 All-Russian Olympiad, 2
A quadrilateral $ABCD$ is inscribed in a circle $\omega$. The tangent to $\omega$ at $A$ intersects the ray $CB$ at $K$, and the tangent to $\omega$ at $B$ intersects the ray $DA$ at $M$. Prove that if $AM=AD$ and $BK=BC$, then $ABCD$ is a trapezoid.
2002 Federal Competition For Advanced Students, Part 2, 3
Let $H$ be the orthocenter of an acute-angled triangle $ABC$. Show that the triangles $ABH,BCH$ and $CAH$ have the same perimeter if and only if the triangle $ABC$ is equilateral.
2008 IMAC Arhimede, 3
Let $ 0 \leq x \leq 2\pi$. Prove the inequality $ \sqrt {\frac {\sin^{2}x}{1 + \cos^{2}x}} + \sqrt {\frac {\cos^{2}x}{1 + \sin^{2}x}}\geq 1 $
1985 IMO Shortlist, 19
For which integers $n \geq 3$ does there exist a regular $n$-gon in the plane such that all its vertices have integer coordinates in a rectangular coordinate system?
2007 F = Ma, 17
A small point-like object is thrown horizontally off of a $50.0$-$\text{m}$ high building with an initial speed of $10.0 \text{ m/s}$. At any point along the trajectory there is an acceleration component tangential to the trajectory and an acceleration component perpendicular to the trajectory. How many seconds after the object is thrown is the tangential component of the acceleration of the object equal to twice the perpendicular component of the acceleration of the object? Ignore air resistance.
$ \textbf{(A)}\ 2.00\text{ s}$
$\textbf{(B)}\ 1.50\text{ s}$
$\textbf{(C)}\ 1.00\text{ s}$
$\textbf{(D)}\ 0.50\text{ s}$
$\textbf{(E)}\ \text{The building is not high enough for this to occur.} $
1988 IberoAmerican, 1
The measure of the angles of a triangle are in arithmetic progression and the lengths of its altitudes are as well. Show that such a triangle is equilateral.
2011 Today's Calculation Of Integral, 676
Let $f(x)=\cos ^ 4 x+3\sin ^ 4 x$.
Evaluate $\int_0^{\frac{\pi}{2}} |f'(x)|dx$.
[i]2011 Tokyo University of Science entrance exam/Management[/i]
2014 France Team Selection Test, 2
Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.
2007 Today's Calculation Of Integral, 223
Evaluate $ \int_{0}^{\pi}\sqrt{(\cos x\plus{}\cos 2x\plus{}\cos 3x)^{2}\plus{}(\sin x\plus{}\sin 2x\plus{}\sin 3x)^{2}}\ dx$.
1969 IMO Longlists, 38
$(HUN 5)$ Let $r$ and $m (r \le m)$ be natural numbers and $Ak =\frac{2k-1}{2m}\pi$. Evaluate $\frac{1}{m^2}\displaystyle\sum_{k=1}^{m}\displaystyle\sum_{l=1}^{m}\sin(rA_k)\sin(rA_l)\cos(rA_k-rA_l)$
2007 Today's Calculation Of Integral, 185
Evaluate the following integrals.
(1) $\int_{0}^{\frac{\pi}{4}}\frac{dx}{1+\sin x}.$
(2) $\int_{\frac{4}{3}}^{2}\frac{dx}{x^{2}\sqrt{x-1}}.$
2003 AIME Problems, 11
An angle $x$ is chosen at random from the interval $0^\circ < x < 90^\circ$. Let $p$ be the probability that the numbers $\sin^2 x$, $\cos^2 x$, and $\sin x \cos x$ are not the lengths of the sides of a triangle. Given that $p = d/n$, where $d$ is the number of degrees in $\arctan m$ and $m$ and $n$ are positive integers with $m + n < 1000$, find $m + n$.
1997 National High School Mathematics League, 13
$x\geq y\geq z\geq \frac{\pi}{12},x+y+z=\frac{\pi}{2}$, find the maximum and minumum value of $\cos x\sin y\cos z$.
2011 Balkan MO, 1
Let $ABCD$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at $E$. The midpoints of $AB$ and $CD$ are $F$ and $G$ respectively, and $\ell$ is the line through $G$ parallel to $AB$. The feet of the perpendiculars from E onto the lines $\ell$ and $CD$ are $H$ and $K$, respectively. Prove that the lines $EF$ and $HK$ are perpendicular.
2007 F = Ma, 24
A ball of mass $m$ is launched into the air. Ignore air resistance, but assume that there is a wind that exerts a constant force $F_0$ in the -$x$ direction. In terms of $F_0$ and the acceleration due to gravity $g$, at what angle above the positive $x$-axis must the ball be launched in order to come back to the point from which it was launched?
$ \textbf{(A)}\ \tan^{-1}(F_0/mg)$
$\textbf{(B)}\ \tan^{-1}(mg/F_0)$
$\textbf{(C)}\ \sin^{-1}(F_0/mg)$
$\textbf{(D)}\ \text{the angle depends on the launch speed}$
$\textbf{(E)}\ \text{no such angle is possible}$
1987 IMO Longlists, 70
In an acute-angled triangle $ABC$ the interior bisector of angle $A$ meets $BC$ at $L$ and meets the circumcircle of $ABC$ again at $N$. From $L$ perpendiculars are drawn to $AB$ and $AC$, with feet $K$ and $M$ respectively. Prove that the quadrilateral $AKNM$ and the triangle $ABC$ have equal areas.[i](IMO Problem 2)[/i]
[i]Proposed by Soviet Union.[/i]
2001 China National Olympiad, 1
Let $a$ be real number with $\sqrt{2}<a<2$, and let $ABCD$ be a convex cyclic quadrilateral whose circumcentre $O$ lies in its interior. The quadrilateral's circumcircle $\omega$ has radius $1$, and the longest and shortest sides of the quadrilateral have length $a$ and $\sqrt{4-a^2}$, respectively. Lines $L_A,L_B,L_C,L_D$ are tangent to $\omega$ at $A,B,C,D$, respectively.
Let lines $L_A$ and $L_B$, $L_B$ and $L_C$,$L_C$ and $L_D$,$L_D$ and $L_A$ intersect at $A',B',C',D'$ respectively. Determine the minimum value of $\frac{S_{A'B'C'D'}}{S_{ABCD}}$.
2010 Germany Team Selection Test, 3
Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that
\[f(x)f(y) = (x+y+1)^2 \cdot f \left( \frac{xy-1}{x+y+1} \right)\] $\forall x,y \in \mathbb{R}$ with $x+y+1 \neq 0$ and $f(x) > 1$ $\forall x > 0.$
2013 Balkan MO, 1
In a triangle $ABC$, the excircle $\omega_a$ opposite $A$ touches $AB$ at $P$ and $AC$ at $Q$, while the excircle $\omega_b$ opposite $B$ touches $BA$ at $M$ and $BC$ at $N$. Let $K$ be the projection of $C$ onto $MN$ and let $L$ be the projection of $C$ onto $PQ$. Show that the quadrilateral $MKLP$ is cyclic.
([i]Bulgaria[/i])
1988 Dutch Mathematical Olympiad, 2
Given is a number $a$ with 0 $\le \alpha \le \pi$. A sequence $c_0,c_1, c_2,...$ is defined as
$$c_0=\cos \alpha$$
$$C_{n+1}=\sqrt{\frac{1+c_n}{2}} \,\, for \,\,\, n=0,1,2,...$$
Calculate $\lim_{n\to \infty}2^{2n+1}(1-c_n)$
1995 Putnam, 2
An ellipse, whose semi-axes have length $a$ and $b$, rolls without slipping on the curve $y=c\sin{\left(\frac{x}{a}\right)}$. How are $a,b,c$ related, given that the ellipse completes one revolution when it traverses one period of the curve?
1971 Canada National Olympiad, 9
Two flag poles of height $h$ and $k$ are situated $2a$ units apart on a level surface. Find the set of all points on the surface which are so situated that the angles of elevation of the tops of the poles are equal.
2007 Stanford Mathematics Tournament, 4
Evaluate $ (\tan 10^\circ)(\tan 20^\circ)(\tan 30^\circ)(\tan 40^\circ)(\tan 50^\circ)(\tan 60^\circ)(\tan 70^\circ)(\tan 80^\circ)$.
2012 Belarus Team Selection Test, 3
Prove that for every positive integer $n,$ the set $\{2,3,4,\ldots,3n+1\}$ can be partitioned into $n$ triples in such a way that the numbers from each triple are the lengths of the sides of some obtuse triangle.
[i]Proposed by Canada[/i]
2014 AIME Problems, 11
In $\triangle RED, RD =1, \angle DRE = 75^\circ$ and $\angle RED = 45^\circ$. Let $M$ be the midpoint of segment $\overline{RD}$. Point $C$ lies on side $\overline{ED}$ such that $\overline{RC} \perp \overline{EM}$. Extend segment $\overline{DE}$ through $E$ to point $A$ such that $CA = AR$. Then $AE = \tfrac{a-\sqrt{b}}{c},$ where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer. Find $a+b+c$.