This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

Today's calculation of integrals, 851

Let $T$ be a period of a function $f(x)=|\cos x|\sin x\ (-\infty,\ \infty).$ Find $\lim_{n\to\infty} \int_0^{nT} e^{-x}f(x)\ dx.$

1969 IMO Longlists, 26

$(GBR 3)$ A smooth solid consists of a right circular cylinder of height $h$ and base-radius $r$, surmounted by a hemisphere of radius $r$ and center $O.$ The solid stands on a horizontal table. One end of a string is attached to a point on the base. The string is stretched (initially being kept in the vertical plane) over the highest point of the solid and held down at the point $P$ on the hemisphere such that $OP$ makes an angle $\alpha$ with the horizontal. Show that if $\alpha$ is small enough, the string will slacken if slightly displaced and no longer remain in a vertical plane. If then pulled tight through $P$, show that it will cross the common circular section of the hemisphere and cylinder at a point $Q$ such that $\angle SOQ = \phi$, $S$ being where it initially crossed this section, and $\sin \phi = \frac{r \tan \alpha}{h}$.

1984 AMC 12/AHSME, 29

Find the largest value for $\frac{y}{x}$ for pairs of real numbers $(x,y)$ which satisfy \[(x-3)^2 + (y-3)^2 = 6.\] $\textbf{(A) }3 + 2 \sqrt 2\qquad \textbf{(B) } 2 + \sqrt 3\qquad \textbf{(C ) }3 \sqrt 3\qquad \textbf{(D) }6\qquad \textbf{(E) }6 + 2 \sqrt 3$

1970 IMO Longlists, 55

A turtle runs away from an UFO with a speed of $0.2 \ m/s$. The UFO flies $5$ meters above the ground, with a speed of $20 \ m/s$. The UFO's path is a broken line, where after flying in a straight path of length $\ell$ (in meters) it may turn through for any acute angle $\alpha$ such that $\tan \alpha < \frac{\ell}{1000}$. When the UFO's center approaches within $13$ meters of the turtle, it catches the turtle. Prove that for any initial position the UFO can catch the turtle.

2014 Vietnam Team Selection Test, 4

a. Let $ABC$ be a triangle with altitude $AD$ and $P$ a variable point on $AD$. Lines $PB$ and $AC$ intersect each other at $E$, lines $PC$ and $AB$ intersect each other at $F.$ Suppose $AEDF$ is a quadrilateral inscribed . Prove that \[\frac{PA}{PD}=(\tan B+\tan C)\cot \frac{A}{2}.\] b. Let $ABC$ be a triangle with orthocentre $H$ and $P$ a variable point on $AH$. The line through $C$ perpendicular to $AC$ meets $BP$ at $M$, The line through $B$ perpendicular to $AB$ meets $CP$ at $N.$ $K$ is the projection of $A$on $MN$. Prove that $\angle BKC+\angle MAN$ is invariant .

2013 India IMO Training Camp, 2

In a triangle $ABC$, let $I$ denote its incenter. Points $D, E, F$ are chosen on the segments $BC, CA, AB$, respectively, such that $BD + BF = AC$ and $CD + CE = AB$. The circumcircles of triangles $AEF, BFD, CDE$ intersect lines $AI, BI, CI$, respectively, at points $K, L, M$ (different from $A, B, C$), respectively. Prove that $K, L, M, I$ are concyclic.

2011 Today's Calculation Of Integral, 700

Evaluate \[\int_0^{\pi} \frac{x^2\cos ^ 2 x-x\sin x-\cos x-1}{(1+x\sin x)^2}dx\]

2010 Today's Calculation Of Integral, 592

Prove the following inequality. \[ \frac{\sqrt{2}}{4}\minus{}\frac 12\minus{}\frac 14\ln 2<\int_0^{\frac{\pi}{4}} \ln \cos x\ dx<\frac 38\pi\plus{}\frac 12\minus{}\ln \ (3\plus{}2\sqrt{2})\]

2007 Romania National Olympiad, 3

Tags: trigonometry
Consider the triangle $ ABC$ with $ m(\angle BAC) \equal{} 90^\circ$ and $ AB < AC$.Let a point $ D$ on the side $ AC$ such that: $ m(\angle ACB) \equal{} m(\angle DBA)$.Let $ E$ be a point on the side $ BC$ such that $ DE\perp BC$.It is known that $ BD \plus{} DE \equal{} AC$. Find the measures of the angles in the triangle $ ABC$.

2010 Moldova Team Selection Test, 2

Let $ x_1, x_2, \ldots, x_n$ be positive real numbers with sum $ 1$. Find the integer part of: $ E\equal{}x_1\plus{}\dfrac{x_2}{\sqrt{1\minus{}x_1^2}}\plus{}\dfrac{x_3}{\sqrt{1\minus{}(x_1\plus{}x_2)^2}}\plus{}\cdots\plus{}\dfrac{x_n}{\sqrt{1\minus{}(x_1\plus{}x_2\plus{}\cdots\plus{}x_{n\minus{}1})^2}}$

1998 All-Russian Olympiad Regional Round, 8.2

Given a parallelogram ABCD, let M and N be the midpoints of the sides BC and CD. Can the lines AM, AN divide the angle BAD into three equal angles?

2005 Today's Calculation Of Integral, 17

Calculate the following indefinite integrals. [1] $\int \frac{dx}{e^x-e^{-x}}$ [2] $\int e^{-ax}\cos 2x dx\ (a\neq 0)$ [3] $\int (3^x-2)^2 dx$ [4] $\int \frac{x^4+2x^3+3x^2+1}{(x+2)^5}dx$ [5] $\int \frac{dx}{1-\cos x}dx$

2011 AIME Problems, 9

Suppose $x$ is in the interval $[0,\pi/2]$ and $\log_{24\sin{x}}(24\cos{x})=\frac{3}{2}$. Find $24\cot^2{x}$.

2001 AIME Problems, 13

In a certain circle, the chord of a $d$-degree arc is 22 centimeters long, and the chord of a $2d$-degree arc is 20 centimeters longer than the chord of a $3d$-degree arc, where $d<120.$ The length of the chord of a $3d$-degree arc is $-m+\sqrt{n}$ centimeters, where $m$ and $n$ are positive integers. Find $m+n.$

2004 USAMTS Problems, 5

Two circles of equal radius can tightly fit inside right triangle $ABC$, which has $AB=13$, $BC=12$, and $CA=5$, in the three positions illustrated below. Determine the radii of the circles in each case. [asy] size(400); defaultpen(linewidth(0.7)+fontsize(12)); picture p = new picture; pair s1 = (20,0), s2 = (40,0); real r1 = 1.5, r2 = 10/9, r3 = 26/7; pair A=(12,5), B=(0,0), C=(12,0); draw(p,A--B--C--cycle); label(p,"$B$",B,SW); label(p,"$A$",A,NE); label(p,"$C$",C,SE); add(p); add(shift(s1)*p); add(shift(s2)*p); draw(circle(C+(-r1,r1),r1)); draw(circle(C+(-3*r1,r1),r1)); draw(circle(s1+C+(-r2,r2),r2)); draw(circle(s1+C+(-r2,3*r2),r2)); pair D=s2+156/17*(A-B)/abs(A-B), E=s2+(169/17,0), F=extension(D,E,s2+A,s2+C); draw(incircle(s2+B,D,E)); draw(incircle(s2+A,D,F)); label("Case (i)",(6,-3)); label("Case (ii)",s1+(6,-3)); label("Case (iii)",s2+(6,-3));[/asy]

2005 China Northern MO, 1

$AB$ is a chord of a circle with center $O$, $M$ is the midpoint of $AB$. A non-diameter chord is drawn through $M$ and intersects the circle at $C$ and $D$. The tangents of the circle from points $C$ and $D$ intersect line $AB$ at $P$ and $Q$, respectively. Prove that $PA$ = $QB$.

2014 USA TSTST, 3

Find all polynomials $P(x)$ with real coefficients that satisfy \[P(x\sqrt{2})=P(x+\sqrt{1-x^2})\]for all real $x$ with $|x|\le 1$.

2014 Baltic Way, 1

Show that \[\cos(56^{\circ}) \cdot \cos(2 \cdot 56^{\circ}) \cdot \cos(2^2\cdot 56^{\circ})\cdot . . . \cdot \cos(2^{23}\cdot 56^{\circ}) = \frac{1}{2^{24}} .\]

1996 Moldova Team Selection Test, 3

In triangle $ABC$ medians from $B$ and $C$ are perpendicular. Prove that $\frac{\sin(B+C)}{\sin B \cdot \sin C} \geq \frac{2}{3}.$

1995 Putnam, 2

An ellipse, whose semi-axes have length $a$ and $b$, rolls without slipping on the curve $y=c\sin{\left(\frac{x}{a}\right)}$. How are $a,b,c$ related, given that the ellipse completes one revolution when it traverses one period of the curve?

2012 Turkmenistan National Math Olympiad, 1

Find the max and min value of $a\cos^2 x+b\sin x\cos x+c\sin^2 x$.

1986 Iran MO (2nd round), 1

Let $f$ be a function such that \[f(x)=\frac{(x^2-2x+1) \sin \frac{1}{x-1}}{\sin \pi x}.\] Find the limit of $f$ in the point $x_0=1.$

2006 USA Team Selection Test, 6

Let $ABC$ be a triangle. Triangles $PAB$ and $QAC$ are constructed outside of triangle $ABC$ such that $AP = AB$ and $AQ = AC$ and $\angle{BAP}= \angle{CAQ}$. Segments $BQ$ and $CP$ meet at $R$. Let $O$ be the circumcenter of triangle $BCR$. Prove that $AO \perp PQ.$

2005 Iran MO (3rd Round), 1

We call the set $A\in \mathbb R^n$ CN if and only if for every continuous $f:A\to A$ there exists some $x\in A$ such that $f(x)=x$. a) Example: We know that $A = \{ x\in\mathbb R^n | |x|\leq 1 \}$ is CN. b) The circle is not CN. Which one of these sets are CN? 1) $A=\{x\in\mathbb R^3| |x|=1\}$ 2) The cross $\{(x,y)\in\mathbb R^2|xy=0,\ |x|+|y|\leq1\}$ 3) Graph of the function $f:[0,1]\to \mathbb R$ defined by \[f(x)=\sin\frac 1x\ \mbox{if}\ x\neq0,\ f(0)=0\]

1981 AMC 12/AHSME, 19

In $\triangle ABC$, $M$ is the midpoint of side $BC$, $AN$ bisects $\angle BAC$, $BN\perp AN$ and $\theta$ is the measure of $\angle BAC$. If sides $AB$ and $AC$ have lengths $14$ and $19$, respectively, then length $MN$ equals [asy] size(230); defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, A=14*dir(36), C=intersectionpoint(B--(9001,0), Circle(A,19)), M=midpoint(B--C), b=A+14*dir(A--C), N=foot(A, B, b); draw(N--B--A--N--M--C--A^^B--M); markscalefactor=0.1; draw(rightanglemark(B,N,A)); pair point=N; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, S); label("$N$", N, dir(30)); label("$19$", (A+C)/2, dir(A--C)*dir(90)); label("$14$", (A+B)/2, dir(A--B)*dir(270)); [/asy] $\displaystyle \text{(A)} \ 2 \qquad \text{(B)} \ \frac{5}{2} \qquad \text{(C)} \ \frac{5}{2} - \sin \theta \qquad \text{(D)} \ \frac{5}{2} - \frac{1}{2} \sin \theta \qquad \text{(E)} \ \frac{5}{2} - \frac{1}{2} \sin \left(\frac{1}{2} \theta\right)$