This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2009 Putnam, A3

Let $ d_n$ be the determinant of the $ n\times n$ matrix whose entries, from left to right and then from top to bottom, are $ \cos 1,\cos 2,\dots,\cos n^2.$ (For example, $ d_3 \equal{} \begin{vmatrix}\cos 1 & \cos2 & \cos3 \\ \cos4 & \cos5 & \cos 6 \\ \cos7 & \cos8 & \cos 9\end{vmatrix}.$ The argument of $ \cos$ is always in radians, not degrees.) Evaluate $ \lim_{n\to\infty}d_n.$

2008 Rioplatense Mathematical Olympiad, Level 3, 2

In triangle $ABC$, where $AB<AC$, let $X$, $Y$, $Z$ denote the points where the incircle is tangent to $BC$, $CA$, $AB$, respectively. On the circumcircle of $ABC$, let $U$ denote the midpoint of the arc $BC$ that contains the point $A$. The line $UX$ meets the circumcircle again at the point $K$. Let $T$ denote the point of intersection of $AK$ and $YZ$. Prove that $XT$ is perpendicular to $YZ$.

1999 Putnam, 5

For an integer $n\geq 3$, let $\theta=2\pi/n$. Evaluate the determinant of the $n\times n$ matrix $I+A$, where $I$ is the $n\times n$ identity matrix and $A=(a_{jk})$ has entries $a_{jk}=\cos(j\theta+k\theta)$ for all $j,k$.

MathLinks Contest 7th, 5.2

Let $ A^{\prime}$ be an arbitrary point on the side $ BC$ of a triangle $ ABC$. Denote by $ \mathcal{T}_{A}^{b}$, $ \mathcal{T}_{A}^{c}$ the circles simultanously tangent to $ AA^{\prime}$, $ A^{\prime}B$, $ \Gamma$ and $ AA^{\prime}$, $ A^{\prime}C$, $ \Gamma$, respectively, where $ \Gamma$ is the circumcircle of $ ABC$. Prove that $ \mathcal{T}_{A}^{b}$, $ \mathcal{T}_{A}^{c}$ are congruent if and only if $ AA^{\prime}$ passes through the Nagel point of triangle $ ABC$. ([i]If $ M,N,P$ are the points of tangency of the excircles of the triangle $ ABC$ with the sides of the triangle $ BC$, $ CA$ and $ AB$ respectively, then the Nagel point of the triangle is the intersection point of the lines $ AM$, $ BN$ and $ CP$[/i].)

2014 Contests, 900

Find $\sum_{k=0}^n \frac{(-1)^k}{2k+1}\ _n C_k.$

1949-56 Chisinau City MO, 59

Show that triangle $ABC$ is right-angled if its angles satisfy the ratio $\cos^2A + \cos ^2B +\ cos ^2C=1$.

1991 AMC 12/AHSME, 21

Tags: trigonometry
If $f\left(\frac{x}{x - 1}\right) = \frac{1}{x}$ for all $x \ne 0,1$ and $0 < \theta < \frac{\pi}{2}$, then $f(\sec^{2}\theta) =$ $ \textbf{(A) }\sin^{2}\theta\qquad\textbf{(B) }\cos^{2}\theta\qquad\textbf{(C) }\tan^{2}\theta\qquad\textbf{(D) }\cot^{2}\theta\qquad\textbf{(E) }\csc^{2}\theta $

2014 Mexico National Olympiad, 4

Problem 4 Let $ABCD$ be a rectangle with diagonals $AC$ and $BD$. Let $E$ be the intersection of the bisector of $\angle CAD$ with segment $CD$, $F$ on $CD$ such that $E$ is midpoint of $DF$, and $G$ on $BC$ such that $BG = AC$ (with $C$ between $B$ and $G$). Prove that the circumference through $D$, $F$ and $G$ is tangent to $BG$.

1975 Chisinau City MO, 99

Tags: trigonometry
Prove the equality: $\sin 54^o -\sin 18^o = 0.5$

2014 Turkey Team Selection Test, 2

A circle $\omega$ cuts the sides $BC,CA,AB$ of the triangle $ABC$ at $A_1$ and $A_2$; $B_1$ and $B_2$; $C_1$ and $C_2$, respectively. Let $P$ be the center of $\omega$. $A'$ is the circumcenter of the triangle $A_1A_2P$, $B'$ is the circumcenter of the triangle $B_1B_2P$, $C'$ is the circumcenter of the triangle $C_1C_2P$. Prove that $AA', BB'$ and $CC'$ concur.

1998 USAMO, 3

Let $a_0,a_1,\cdots ,a_n$ be numbers from the interval $(0,\pi/2)$ such that \[ \tan (a_0-\frac{\pi}{4})+ \tan (a_1-\frac{\pi}{4})+\cdots +\tan (a_n-\frac{\pi}{4})\geq n-1. \] Prove that \[ \tan a_0\tan a_1 \cdots \tan a_n\geq n^{n+1}. \]

2004 France Team Selection Test, 2

Let $ABCD$ be a parallelogram. Let $M$ be a point on the side $AB$ and $N$ be a point on the side $BC$ such that the segments $AM$ and $CN$ have equal lengths and are non-zero. The lines $AN$ and $CM$ meet at $Q$. Prove that the line $DQ$ is the bisector of the angle $\measuredangle ADC$. [i]Alternative formulation.[/i] Let $ABCD$ be a parallelogram. Let $M$ and $N$ be points on the sides $AB$ and $BC$, respectively, such that $AM=CN\neq 0$. The lines $AN$ and $CM$ intersect at a point $Q$. Prove that the point $Q$ lies on the bisector of the angle $\measuredangle ADC$.

1986 IMO Longlists, 11

Prove that the sum of the face angles at each vertex of a tetrahedron is a straight angle if and only if the faces are congruent triangles.

2008 Mathcenter Contest, 3

Let $ABC$ be a triangle whose side lengths are opposite the angle $A,B,C$ are $a,b,c$ respectively. Prove that $$\frac{ab\sin{2C}+bc\sin{ 2A}+ca\sin{2B}}{ab+bc+ca}\leq\frac{\sqrt{3}}{2}$$. [i](nooonuii)[/i]

2011 Math Prize For Girls Problems, 20

Let $ABC$ be an equilateral triangle with each side of length 1. Let $X$ be a point chosen uniformly at random on side $\overline{AB}$. Let $Y$ be a point chosen uniformly at random on side $\overline{AC}$. (Points $X$ and $Y$ are chosen independently.) Let $p$ be the probability that the distance $XY$ is at most $\dfrac{1}{\sqrt[4]{3}}\,$. What is the value of $900p$, rounded to the nearest integer?

1989 Canada National Olympiad, 2

Let $ ABC$ be a right angled triangle of area 1. Let $ A'B'C'$ be the points obtained by reflecting $ A,B,C$ respectively, in their opposite sides. Find the area of $ \triangle A'B'C'.$

1976 Polish MO Finals, 1

Tags: trigonometry
Is the number $$\sin \frac{\pi}{18} \sin \frac{3\pi}{18} \sin \frac{5\pi}{18} \sin \frac{7\pi}{18} \sin \frac{9\pi}{18}$$ rational?

2012 Hitotsubashi University Entrance Examination, 1

Given a triangle with $120^\circ$. Let $x,\ y,\ z$ be the side lengths of the triangle such that $x<y<z$. (1) Find all triplets $(x,\ y,\ z)$ of positive integers $x,\ y,\ z$ such that $x+y-z=2$. (2) Find all triplets $(x,\ y,\ z)$ of positive integers $x,\ y,\ z$ such that $x+y-z=3$. (3) Let $a,\ b$ be non-negative integers. Express the number of $(x,\ y,\ z)$ such that $x+y-z=2^a3^b$ in terms of $a,\ b$. 2012 Hitotsubashi University entrance exam, problem 1

2010 Contests, 1

Given an arbitrary triangle $ ABC$, denote by $ P,Q,R$ the intersections of the incircle with sides $ BC, CA, AB$ respectively. Let the area of triangle $ ABC$ be $ T$, and its perimeter $ L$. Prove that the inequality \[\left(\frac {AB}{PQ}\right)^3 \plus{}\left(\frac {BC}{QR}\right)^3 \plus{}\left(\frac {CA}{RP}\right)^3 \geq \frac {2}{\sqrt {3}} \cdot \frac {L^2}{T}\] holds.

1988 AMC 12/AHSME, 13

Tags: trigonometry
If $\sin\ x\ =\ 3\ \cos\ x$ then what is $\sin\ x\ \cos\ x$? $ \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{5}\qquad\textbf{(C)}\ \frac{2}{9}\qquad\textbf{(D)}\ \frac{1}{4}\qquad\textbf{(E)}\ \frac{3}{10} $

2014 Iran Team Selection Test, 6

The incircle of a non-isosceles triangle $ABC$ with the center $I$ touches the sides $BC$ at $D$. let $X$ is a point on arc $BC$ from circumcircle of triangle $ABC$ such that if $E,F$ are feet of perpendicular from $X$ on $BI,CI$ and $M$ is midpoint of $EF$ we have $MB=MC$. prove that $\widehat{BAD}=\widehat{CAX}$

2013 Today's Calculation Of Integral, 888

In the coordinate plane, given a circle $K: x^2+y^2=1,\ C: y=x^2-2$. Let $l$ be the tangent line of $K$ at $P(\cos \theta,\ \sin \theta)\ (\pi<\theta <2\pi).$ Find the minimum area of the part enclosed by $l$ and $C$.

2016 BMT Spring, 20

Find $$\prod^{2017}_{k=1} e^{\pi ik/2017}2 cos \left( \frac{\pi k}{2017} \right)$$

2007 ISI B.Math Entrance Exam, 7

Let $ 0\leq \theta\leq \frac{\pi}{2}$ . Prove that $\sin \theta \geq \frac{2\theta}{\pi}$.

2020 Flanders Math Olympiad, 1

Tags: trigonometry
Let $x$ be an angle between $0^o$ and $90^o$ so that $$\frac{\sin^4 x}{9}+\frac{\cos^4 x}{16 }=\frac{1}{25} .$$ Then what is $\tan x$?