Found problems: 3349
2019 CCA Math Bonanza, L4.4
If an angle $0^\circ<\theta<30^\circ$ satisfies $\sin\left(90^\circ-\theta\right)\sin\left(60^\circ-\theta\right)\sin\left(30^\circ-\theta\right)=\sin^3\left(\theta\right)$, compute $\sin\left(\theta\right)$.
[i]2019 CCA Math Bonanza Lightning Round #4.4[/i]
2010 IberoAmerican Olympiad For University Students, 1
Let $f:S\to\mathbb{R}$ be the function from the set of all right triangles into the set of real numbers, defined by $f(\Delta ABC)=\frac{h}{r}$, where $h$ is the height with respect to the hypotenuse and $r$ is the inscribed circle's radius. Find the image, $Im(f)$, of the function.
2003 Korea - Final Round, 1
Let $P$, $Q$, and $R$ be the points where the incircle of a triangle $ABC$ touches the sides $AB$, $BC$, and $CA$, respectively.
Prove the inequality $\frac{BC} {PQ} + \frac{CA} {QR} + \frac{AB} {RP} \geq 6$.
2008 Hong Kong TST, 1
Let $ \alpha_1$, $ \alpha_2$, $ \ldots$, $ \alpha_{2008}$ be real numbers. Find the maximum value of \[ \sin\alpha_1\cos\alpha_2 \plus{} \sin\alpha_2\cos\alpha_3 \plus{} \cdots \plus{} \sin\alpha_{2007}\cos\alpha_{2008} \plus{} \sin\alpha_{2008}\cos\alpha_1\]
2005 China National Olympiad, 2
A circle meets the three sides $BC,CA,AB$ of a triangle $ABC$ at points $D_1,D_2;E_1,E_2; F_1,F_2$ respectively. Furthermore, line segments $D_1E_1$ and $D_2F_2$ intersect at point $L$, line segments $E_1F_1$ and $E_2D_2$ intersect at point $M$, line segments $F_1D_1$ and $F_2E_2$ intersect at point $N$. Prove that the lines $AL,BM,CN$ are concurrent.
2011 Morocco National Olympiad, 2
Let $\alpha , \beta ,\gamma$ be the angles of a triangle $ABC$ of perimeter $ 2p $ and $R$ is the radius of its circumscribed circle.
$(a)$ Prove that
\[\cot^{2}\alpha +\cot^{2}\beta+\cot^{2}\gamma\geq 3\left(9\cdot \frac{R^{2}}{p^{2}} - 1\right).\]
$(b)$ When do we have equality?
2008 Moldova National Olympiad, 12.8
Evaluate $ \displaystyle I \equal{} \int_0^{\frac\pi4}\left(\sin^62x \plus{} \cos^62x\right)\cdot \ln(1 \plus{} \tan x)\text{d}x$.
1963 Vietnam National Olympiad, 5
The triangle $ ABC$ has semiperimeter $ p$. Find the side length $ BC$ and the area $ S$ in terms of $ \angle A$, $ \angle B$ and $ p$. In particular, find $ S$ if $ p \approx 23.6$, $ \angle A \approx 52^{\circ}42'$, $ \angle B \approx 46^{\circ}16'$.
1962 Czech and Slovak Olympiad III A, 2
Determine the set of all points $(x,y)$ in two-dimensional cartesian coordinate system such that \begin{align*}0\le &\,x\le\frac{\pi}{2}, \\ \sqrt{1-\sin 2x}-\sqrt{1+\sin 2x}\le &\,y\le\sqrt{1-\cos2x}-\sqrt{1+\cos2x}.\end{align*}
Draw a picture of the set.
2006 MOP Homework, 1
$ ABC$ is an acute triangle. The points $ B'$ and $ C'$are the reflections
of $ B$ and $ C$ across the lines $ AC$ and $ AB$ respectively. Suppose
that the circumcircles of triangles$ ABB$' and $ ACC'$ meet at $ A$
and $ P$. Prove that the line $ PA$ passes through the circumcenter
of triangle$ ABC.$
VI Soros Olympiad 1999 - 2000 (Russia), 11.9
Find the largest $c$ such that for any $\lambda \ge 1$ there is an a that satisfies the inequality
$$\sin a + \sin (a\lambda ) \ge c.$$
1983 AIME Problems, 14
In the adjoining figure, two circles of radii 6 and 8 are drawn with their centers 12 units apart. At $P$, one of the points of intersection, a line is drawn in such a way that the chords $QP$ and $PR$ have equal length. Find the square of the length of $QP$.
[asy]unitsize(2.5mm);
defaultpen(linewidth(.8pt)+fontsize(12pt));
dotfactor=3;
pair O1=(0,0), O2=(12,0);
path C1=Circle(O1,8), C2=Circle(O2,6);
pair P=intersectionpoints(C1,C2)[0];
path C3=Circle(P,sqrt(130));
pair Q=intersectionpoints(C3,C1)[0];
pair R=intersectionpoints(C3,C2)[1];
draw(C1);
draw(C2);
//draw(O2--O1);
//dot(O1);
//dot(O2);
draw(Q--R);
label("$Q$",Q,N);
label("$P$",P,dir(80));
label("$R$",R,E);
//label("12",waypoint(O1--O2,0.4),S);[/asy]
2014 Contests, 4
In triangle $ABC$ let $A'$, $B'$, $C'$ respectively be the midpoints of the sides $BC$, $CA$, $AB$. Furthermore let $L$, $M$, $N$ be the projections of the orthocenter on the three sides $BC$, $CA$, $AB$, and let $k$ denote the nine-point circle. The lines $AA'$, $BB'$, $CC'$ intersect $k$ in the points $D$, $E$, $F$. The tangent lines on $k$ in $D$, $E$, $F$ intersect the lines $MN$, $LN$ and $LM$ in the points $P$, $Q$, $R$.
Prove that $P$, $Q$ and $R$ are collinear.
2010 Contests, 3
In plane,let a circle $(O)$ and two fixed points $B,C$ lies in $(O)$
such that $BC$ not is the diameter.Consider a point $A$ varies in
$(O)$ such that $A\neq B,C$ and $AB\neq AC$.Call $D$ and $E$
respective is intersect of $BC$ and internal and external bisector
of $\widehat{BAC}$,$I$ is midpoint of $DE$.The line that pass through
orthocenter of $\triangle ABC$
and perpendicular with $AI$ intersects $AD,AE$ respective at $M,N$.
1/Prove that $MN$ pass through a fixed point
2/Determint the place of $A$ such that $S_{AMN}$ has maxium value
2024 UMD Math Competition Part I, #22
For how many angles $x$, in radians, satisfying $0\le x<2\pi$ do we have $\sin(14x)=\cos(68x)$?
\[\rm a. ~128\qquad \mathrm b. ~130\qquad \mathrm c. ~132 \qquad\mathrm d. ~134\qquad\mathrm e. ~136\]
2005 Germany Team Selection Test, 3
Let ABC be a triangle and let $r, r_a, r_b, r_c$ denote the inradius and ex-radii opposite to the vertices $A, B, C$, respectively. Suppose that $a>r_a, b>r_b, c>r_c$. Prove that
[b](a)[/b] $\triangle ABC$ is acute.
[b](b)[/b] $a+b+c > r+r_a+r_b+r_c$.
Mathley 2014-15, 4
Points $E, F$ are in the plane of triangle $ABC$ so that triangles $ABE$ and $ACF$ are the opposite directed, and the two triangles are isosceles in that $BE = AE, AF = CF$. Let $H, K$ be the orthocenter of triangle $ABE, ACF$ respectively. Points $M, N$ are the intersections of $BE$ and $CF, CK$ and $CH$. Prove that $MN$ passes through the center of the circumcircle of triangle $ABC$.
Nguyen Minh Ha, High School for Education, Hanoi Pedagogical University
2008 Bosnia And Herzegovina - Regional Olympiad, 1
Given are three pairwise externally tangent circles $ K_{1}$ , $ K_{2}$ and $ K_{3}$. denote by $ P_{1}$ tangent point of $ K_{2}$ and $ K_{3}$ and by $ P_{2}$ tangent point of $ K_{1}$ and $ K_{3}$.
Let $ AB$ ($ A$ and $ B$ are different from tangency points) be a diameter of circle $ K_{3}$. Line $ AP_{2}$ intersects circle $ K_{1}$ (for second time) at point $ X$ and line $ BP_{1}$ intersects circle $ K_{2}$(for second time) at $ Y$.
If $ Z$ is intersection point of lines $ AP_{1}$ and $ BP_{2}$ prove that points $ X$, $ Y$ and $ Z$ are collinear.
2007 Tournament Of Towns, 7
$T$ is a point on the plane of triangle $ABC$ such that $\angle ATB = \angle BTC = \angle CTA = 120^\circ$. Prove that the lines symmetric to $AT, BT$ and $CT$ with respect to $BC, CA$ and $AB$, respectively, are concurrent.
1985 Spain Mathematical Olympiad, 3
Solve the equation $tan^2 2x+2 tan2x tan3x = 1$
1972 IMO Longlists, 30
Consider a sequence of circles $K_1,K_2,K_3,K_4, \ldots$ of radii $r_1, r_2, r_3, r_4, \ldots$ , respectively, situated inside a triangle $ABC$. The circle $K_1$ is tangent to $AB$ and $AC$; $K_2$ is tangent to $K_1$, $BA$, and $BC$; $K_3$ is tangent to $K_2$, $CA$, and $CB$; $K_4$ is tangent to $K_3$, $AB$, and $AC$; etc.
(a) Prove the relation
\[r_1 \cot \frac 12 A+ 2 \sqrt{r_1r_2} + r_2 \cot \frac 12 B = r \left(\cot \frac 12 A + \cot \frac 12 B \right) \]
where $r$ is the radius of the incircle of the triangle $ABC$. Deduce the existence of a $t_1$ such that
\[r_1=r \cot \frac 12 B \cot \frac 12 C \sin^2 t_1\]
(b) Prove that the sequence of circles $K_1,K_2, \ldots $ is periodic.
2007 Mexico National Olympiad, 2
Given an equilateral $\triangle ABC$, find the locus of points $P$ such that $\angle APB=\angle BPC$.
2007 Romania Team Selection Test, 2
Let $ ABC$ be a triangle, let $ E, F$ be the tangency points of the incircle $ \Gamma(I)$ to the sides $ AC$, respectively $ AB$, and let $ M$ be the midpoint of the side $ BC$. Let $ N \equal{} AM \cap EF$, let $ \gamma(M)$ be the circle of diameter $ BC$, and let $ X, Y$ be the other (than $ B, C$) intersection points of $ BI$, respectively $ CI$, with $ \gamma$. Prove that
\[ \frac {NX} {NY} \equal{} \frac {AC} {AB}.
\]
[i]Cosmin Pohoata[/i]
2012 Regional Olympiad of Mexico Center Zone, 4
On an acute triangle $ABC$ we draw the internal bisector of $<ABC$, $BE$, and the altitude $AD$, ($D$ on $BC$), show that $<CDE$ it's bigger than 45 degrees.
2008 AMC 12/AHSME, 25
A sequence $ (a_1,b_1)$, $ (a_2,b_2)$, $ (a_3,b_3)$, $ \ldots$ of points in the coordinate plane satisfies \[ (a_{n \plus{} 1}, b_{n \plus{} 1}) \equal{} (\sqrt {3}a_n \minus{} b_n, \sqrt {3}b_n \plus{} a_n)\hspace{3ex}\text{for}\hspace{3ex} n \equal{} 1,2,3,\ldots.\] Suppose that $ (a_{100},b_{100}) \equal{} (2,4)$. What is $ a_1 \plus{} b_1$?
$ \textbf{(A)}\\minus{} \frac {1}{2^{97}} \qquad
\textbf{(B)}\\minus{} \frac {1}{2^{99}} \qquad
\textbf{(C)}\ 0 \qquad
\textbf{(D)}\ \frac {1}{2^{98}} \qquad
\textbf{(E)}\ \frac {1}{2^{96}}$