Found problems: 3349
1978 Austrian-Polish Competition, 3
Prove that
$$\sqrt[44]{\tan 1^\circ\cdot \tan 2^\circ\cdot \dots\cdot \tan 44^\circ}<\sqrt 2-1<\frac{\tan 1^\circ+ \tan 2^\circ+\dots+\tan 44^\circ}{44}.$$
2002 China Girls Math Olympiad, 4
Circles $O_1$ and $O_2$ interest at two points $ B$ and $ C,$ and $ BC$ is the diameter of circle $O_1.$ Construct a tangent line of circle $O_1$ at $ C$ and intersecting circle $O_2$ at another point $ A.$ We join $ AB$ to intersect circle $O_1$ at point $ E,$ then join $ CE$ and extend it to intersect circle $O_2$ at point $ F.$ Assume $ H$ is an arbitrary point on line segment $ AF.$ We join $ HE$ and extend it to intersect circle $O_1$ at point $ G,$ and then join $ BG$ and extend it to intersect the extend line of $ AC$ at point $ D.$ Prove that \[ \frac{AH}{HF} = \frac{AC}{CD}.\]
1981 USAMO, 3
If $A,B,C$ are the angles of a triangle, prove that
\[-2 \le \sin{3A}+\sin{3B}+\sin{3C} \le \frac{3\sqrt{3}}{2}\]
and determine when equality holds.
2017 Korea USCM, 7
Prove the following inequality holds if $\{a_n\}$ is a deceasing sequence of positive reals, and $0<\theta<\frac{\pi}{2}$.
$$\left|\sum_{n=1}^{2017} a_n \cos n\theta \right| \leq \frac{\pi a_1}{\theta}$$
2013 Albania Team Selection Test, 4
It is given a triangle $ABC$ whose circumcenter is $O$ and orthocenter $H$.
If $AO=AH$ find the angle $\hat{BAC}$ of that triangle.
2016 Sharygin Geometry Olympiad, 7
From the altitudes of an acute-angled triangle, a triangle can be composed. Prove that a triangle can be composed from the bisectors of this triangle.
2005 Bulgaria Team Selection Test, 1
Let $ABC$ be an acute triangle. Find the locus of the points $M$, in the interior of $\bigtriangleup ABC$, such that $AB-FG= \frac{MF.AG+MG.BF}{CM}$, where $F$ and $G$ are the feet of the perpendiculars from $M$ to the lines $BC$ and $AC$, respectively.
IV Soros Olympiad 1997 - 98 (Russia), 11.1
On the coordinate plane, draw a set of points whose coordinates $(x, y)$ satisfy the inequality $$2 arc \cos x \ge arc \cos y$$
2023 CMIMC Team, 7
Compute the value of
$$\sin^2\left(\frac{\pi}{7}\right) + \sin^2\left(\frac{3\pi}{7}\right) + \sin^2\left(\frac{5\pi}{7}\right).$$
Your answer should not involve any trigonometric functions.
[i]Proposed by Howard Halim[/i]
1990 IMO Longlists, 25
The incenter of the triangle $ ABC$ is $ K.$ The midpoint of $ AB$ is $ C_1$ and that of $ AC$ is $ B_1.$ The lines $ C_1K$ and $ AC$ meet at $ B_2,$ the lines $ B_1K$ and $ AB$ at $ C_2.$ If the areas of the triangles $ AB_2C_2$ and $ ABC$ are equal, what is the measure of angle $ \angle CAB?$
2006 AMC 12/AHSME, 15
Suppose $ \cos x \equal{} 0$ and $ \cos (x \plus{} z) \equal{} 1/2$. What is the smallest possible positive value of $ z$?
$ \textbf{(A) } \frac {\pi}{6}\qquad \textbf{(B) } \frac {\pi}{3}\qquad \textbf{(C) } \frac {\pi}{2}\qquad \textbf{(D) } \frac {5\pi}{6}\qquad \textbf{(E) } \frac {7\pi}{6}$
1995 India National Olympiad, 1
In an acute angled triangle $ABC$, $\angle A = 30^{\circ}$, $H$ is the orthocenter, and $M$ is the midpoint of $BC$. On the line $HM$, take a point $T$ such that $HM = MT$. Show that $AT = 2 BC$.
2009 District Round (Round II), 3
$A,B,C$ are the three angles in a triangle such that
$2\sin B\sin (A+B)-\cos A=1$,
$2\sin C\sin (B+C)-\cos B=0$
find the three angles.
1952 Polish MO Finals, 4
Prove that if the angles $ A $, $ B $, $ C $ of a triangle satisfy the equation
$$\cos 3A + \cos 3B + \cos 3C = 1,$$
then one of these angles equals $120^\circ $.
2007 Indonesia TST, 1
Let $ P$ be a point in triangle $ ABC$, and define $ \alpha,\beta,\gamma$ as follows: \[ \alpha\equal{}\angle BPC\minus{}\angle BAC, \quad \beta\equal{}\angle CPA\minus{}\angle \angle CBA, \quad \gamma\equal{}\angle APB\minus{}\angle ACB.\] Prove that \[ PA\dfrac{\sin \angle BAC}{\sin \alpha}\equal{}PB\dfrac{\sin \angle CBA}{\sin \beta}\equal{}PC\dfrac{\sin \angle ACB}{\sin \gamma}.\]
2012 Today's Calculation Of Integral, 851
Let $T$ be a period of a function $f(x)=|\cos x|\sin x\ (-\infty,\ \infty).$
Find $\lim_{n\to\infty} \int_0^{nT} e^{-x}f(x)\ dx.$
2010 AMC 10, 14
Triangle $ ABC$ has $ AB \equal{} 2 \cdot AC$. Let $ D$ and $ E$ be on $ \overline{AB}$ and $ \overline{BC}$, respectively, such that $ \angle{BAE} \equal{} \angle{ACD}.$ Let $ F$ be the intersection of segments $ AE$ and $ CD$, and suppose that $ \triangle{CFE}$ is equilateral. What is $ \angle{ACB}$?
$ \textbf{(A)}\ 60^{\circ}\qquad \textbf{(B)}\ 75^{\circ}\qquad \textbf{(C)}\ 90^{\circ}\qquad \textbf{(D)}\ 105^{\circ}\qquad \textbf{(E)}\ 120^{\circ}$
1991 AIME Problems, 15
For positive integer $n$, define $S_n$ to be the minimum value of the sum \[ \sum_{k=1}^n \sqrt{(2k-1)^2+a_k^2}, \] where $a_1,a_2,\ldots,a_n$ are positive real numbers whose sum is 17. There is a unique positive integer $n$ for which $S_n$ is also an integer. Find this $n$.
2003 China Girls Math Olympiad, 3
As shown in the figure, quadrilateral $ ABCD$ is inscribed in a circle with $ AC$ as its diameter, $ BD \perp AC,$ and $ E$ the intersection of $ AC$ and $ BD.$ Extend line segment $ DA$ and $ BA$ through $ A$ to $ F$ and $ G$ respectively, such that $ DG \parallel{} BF.$ Extend $ GF$ to $ H$ such that $ CH \perp GH.$ Prove that points $ B, E, F$ and $ H$ lie on one circle.
[asy]
defaultpen(linewidth(0.8)+fontsize(10));size(150);
real a=4, b=6.5, c=9, d=a*c/b, g=14, f=sqrt(a^2+b^2)*sqrt(a^2+d^2)/g;
pair E=origin, A=(0,a), B=(-b,0), C=(0,-c), D=(d,0), G=A+g*dir(B--A), F=A+f*dir(D--A), M=midpoint(G--C);
path c1=circumcircle(A,B,C), c2=Circle(M, abs(M-G));
pair Hf=F+10*dir(G--F), H=intersectionpoint(F--Hf, c2);
dot(A^^B^^C^^D^^E^^F^^G^^H);
draw(c1^^c2^^G--D--C--A--G--F--D--B--A^^F--H--C--B--F);
draw(H--B^^F--E^^G--C, linetype("2 2"));
pair point= E;
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$F$", F, dir(point--F));
label("$G$", G, dir(point--G));
label("$H$", H, dir(point--H));
label("$E$", E, NE);[/asy]
2015 AMC 12/AHSME, 23
Let $S$ be a square of side length $1$. Two points are chosen independently at random on the sides of $S$. The probability that the straight-line distance between the points is at least $\tfrac12$ is $\tfrac{a-b\pi}c$, where $a$, $b$, and $c$ are positive integers and $\gcd(a,b,c)=1$. What is $a+b+c$?
$\textbf{(A) }59\qquad\textbf{(B) }60\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$
2008 ISI B.Stat Entrance Exam, 1
Of all triangles with given perimeter, find the triangle with the maximum area. Justify your answer
1998 APMO, 3
Let $a$, $b$, $c$ be positive real numbers. Prove that
\[ \biggl(1+\frac{a}{b}\biggr) \biggl(1+\frac{b}{c}\biggr) \biggl(1+\frac{c}{a}\biggr) \ge 2 \biggl(1+\frac{a+b+c}{\sqrt[3]{abc}}\biggr). \]
2013 Princeton University Math Competition, 4
An equilateral triangle is given. A point lies on the incircle of this triangle. If the smallest two distances from the point to the sides of the triangle is $1$ and $4$, the sidelength of this equilateral triangle can be expressed as $\tfrac{a\sqrt b}c$ where $(a,c)=1$ and $b$ is not divisible by the square of an integer greater than $1$. Find $a+b+c$.
2004 Silk Road, 3
In-circle of $ABC$ with center $I$ touch $AB$ and $AC$ at $P$ and $Q$ respectively. $BI$ and $CI$ intersect $PQ$ at $K$ and $L$ respectively. Prove, that circumcircle of $ILK$ touch incircle of $ABC$ iff $|AB|+|AC|=3|BC|$.
1998 AIME Problems, 12
Let $ABC$ be equilateral, and $D, E,$ and $F$ be the midpoints of $\overline{BC}, \overline{CA},$ and $\overline{AB},$ respectively. There exist points $P, Q,$ and $R$ on $\overline{DE}, \overline{EF},$ and $\overline{FD},$ respectively, with the property that $P$ is on $\overline{CQ}, Q$ is on $\overline{AR},$ and $R$ is on $\overline{BP}.$ The ratio of the area of triangle $ABC$ to the area of triangle $PQR$ is $a+b\sqrt{c},$ where $a, b$ and $c$ are integers, and $c$ is not divisible by the square of any prime. What is $a^{2}+b^{2}+c^{2}$?