Found problems: 560
2013 Iran Team Selection Test, 4
$m$ and $n$ are two nonnegative integers. In the Philosopher's Chess, The chessboard is an infinite grid of identical regular hexagons and a new piece named the Donkey moves on it as follows:
Starting from one of the hexagons, the Donkey moves $m$ cells in one of the $6$ directions, then it turns $60$ degrees clockwise and after that moves $n$ cells in this new direction until it reaches it's final cell.
At most how many cells are in the Philosopher's chessboard such that one cannot go from anyone of them to the other with a finite number of movements of the Donkey?
[i]Proposed by Shayan Dashmiz[/i]
2022 Harvard-MIT Mathematics Tournament, 10
On a board the following six vectors are written: $$(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1).$$ Given two vectors $v$ and $w$ on the board, a move consists of erasing $v$ and $w$ and replacing them with $\frac{1}{\sqrt2} (v + w)$ and $\frac{1}{\sqrt2} (v - w)$. After some number of moves, the sum of the six vectors on the board is $u$. Find, with proof, the maximum possible length of $u$.
2012 Indonesia TST, 3
The [i]cross[/i] of a convex $n$-gon is the quadratic mean of the lengths between the possible pairs of vertices. For example, the cross of a $3 \times 4$ rectangle is $\sqrt{ \dfrac{3^2 + 3^2 + 4^2 + 4^2 + 5^2 + 5^2}{6} } = \dfrac{5}{3} \sqrt{6}$.
Suppose $S$ is a dodecagon ($12$-gon) inscribed in a unit circle. Find the greatest possible cross of $S$.
MathLinks Contest 7th, 2.1
Let $ k$ be an integer, $ k \geq 2$, and let $ p_{1},\ p_{2},\ \ldots,\ p_{k}$ be positive reals with $ p_{1} \plus{} p_{2} \plus{} \ldots \plus{} p_{k} \equal{} 1$. Suppose we have a collection $ \left(A_{1,1},\ A_{1,2},\ \ldots,\ A_{1,k}\right)$, $ \left(A_{2,1},\ A_{2,2},\ \ldots,\ A_{2,k}\right)$, $ \ldots$, $ \left(A_{m,1},\ A_{1,2},\ \ldots,\ A_{m,k}\right)$ of $ k$-tuples of finite sets satisfying the following two properties:
(i) for every $ i$ and every $ j \neq j^{\prime}$, $ A_{i,j}\cap A_{i,j^{\prime}} \equal{} \emptyset$, and
(ii) for every $ i\neq i^{\prime}$ there exist $ j\neq j^{\prime}$ for which $ A_{i,j} \cap A_{i^{\prime},j^{\prime}}\neq\emptyset$. Prove that
\[ \sum_{b \equal{} 1}^{m}{\prod_{a \equal{} 1}^{k}{p_{a}^{|A_{b,a}|}}} \leq 1.
\]
2011 Putnam, A4
For which positive integers $n$ is there an $n\times n$ matrix with integer entries such that every dot product of a row with itself is even, while every dot product of two different rows is odd?
2013 Gulf Math Olympiad, 3
There are $n$ people standing on a circular track. We want to perform a number of [i]moves[/i] so that we end up with a situation where the distance between every two neighbours is the same. The [i]move[/i] that is allowed consists in selecting two people and asking one of them to walk a distance $d$ on the circular track clockwise, and asking the other to walk the same distance on the track anticlockwise. The two people selected and the quantity $d$ can vary from move to move.
Prove that it is possible to reach the desired situation (where the distance between every two neighbours is the same) after at most $n-1$ moves.
2013 AIME Problems, 7
A rectangular box has width $12$ inches, length $16$ inches, and height $\tfrac{m}{n}$ inches, where $m$ and $n$ are relatively prime positive integers. Three faces of the box meet at a corner of the box. The center points of those three faces are the vertices of a triangle with an area of $30$ square inches. Find $m+n$.
2009 Putnam, A6
Let $ f: [0,1]^2\to\mathbb{R}$ be a continuous function on the closed unit square such that $ \frac{\partial f}{\partial x}$ and $ \frac{\partial f}{\partial y}$ exist and are continuous on the interior of $ (0,1)^2.$ Let $ a\equal{}\int_0^1f(0,y)\,dy,\ b\equal{}\int_0^1f(1,y)\,dy,\ c\equal{}\int_0^1f(x,0)\,dx$ and $ d\equal{}\int_0^1f(x,1)\,dx.$ Prove or disprove: There must be a point $ (x_0,y_0)$ in $ (0,1)^2$ such that
$ \frac{\partial f}{\partial x}(x_0,y_0)\equal{}b\minus{}a$ and $ \frac{\partial f}{\partial y}(x_0,y_0)\equal{}d\minus{}c.$
1984 IMO Longlists, 10
Assume that the bisecting plane of the dihedral angle at edge $AB$ of the tetrahedron $ABCD$ meets the edge $CD$ at point $E$. Denote by $S_1, S_2, S_3$, respectively the areas of the triangles $ABC, ABE$, and $ABD$. Prove that no tetrahedron exists for which $S_1, S_2, S_3$ (in this order) form an arithmetic or geometric progression.
1996 Bundeswettbewerb Mathematik, 3
Let $ABC$ be a triangle, and erect three rectangles $ABB_1A_2$, $BCC_1B_2$, $CAA_1C_2$ externally on its sides $AB$, $BC$, $CA$, respectively. Prove that the perpendicular bisectors of the segments $A_1A_2$, $B_1B_2$, $C_1C_2$ are concurrent.
1991 All Soviet Union Mathematical Olympiad, 554
Do there exist $4$ vectors in the plane so that none is a multiple of another, but the sum of each pair is perpendicular to the sum of the other two? Do there exist $91$ non-zero vectors in the plane such that the sum of any $19$ is perpendicular to the sum of the others?
2024 Cono Sur Olympiad, 2
Let $ABC$ be a triangle. Let $A_1$ and $A_2$ be points on side $BC, B_1$ and $B_2$ be points on side $CA$ and $C_1$ and $C_2$ be points on side $AB$ such that $A_1A_2B_1B_2C_1C_2$ is a convex hexagon and that $B,A_1,A_2$ and $C$ are located in that order on side $BC$.
We say that triangles $AB_2C_1, BA_1C_2$ and $CA_2B_1$ are glueable if there exists a triangle $PQR$ and there exist $X,Y$ and $Z$ on sides $QR, RP$ and $PQ$ respectively, such that triangle $AB_2C_1$ is congruent in that order to triangle $PYZ$, triangle $BA_1C_2$ is congruent in that order to triangle $QXZ$ and triangle $CA_2B_1$ is congruent in that order to triangle $RXY$. Prove that triangles $AB_2C_1, BA_1C_2$ and $CA_2B_1$ are glueable if and only if the centroids of triangles $A_1B_1C_1$ and $A_2B_2C_2$ coincide.
1969 Miklós Schweitzer, 12
Let $ A$ and $ B$ be nonsingular matrices of order $ p$, and let $ \xi$ and $ \eta$ be independent random vectors of dimension $ p$. Show that if $ \xi,\eta$ and $ \xi A\plus{} \eta B$ have the same distribution, if their first and second moments exist, and if their covariance matrix is the identity matrix, then these random vectors are normally distributed.
[i]B. Gyires[/i]
2003 District Olympiad, 4
We say that a set $\displaystyle A$ of non-zero vectors from the plane has the property $\displaystyle \left( \mathcal S \right)$ iff it has at least three elements and for all $\displaystyle \overrightarrow u \in A$ there are $\displaystyle \overrightarrow v, \overrightarrow w \in A$ such that $\displaystyle \overrightarrow v \neq \overrightarrow w$ and $\displaystyle \overrightarrow u = \overrightarrow v + \overrightarrow w$.
(a) Prove that for all $\displaystyle n \geq 6$ there is a set of $\displaystyle n$ non-zero vectors, which has the property $\displaystyle \left( \mathcal S \right)$.
(b) Prove that every finite set of non-zero vectors, which has the property $\displaystyle \left( \mathcal S \right)$, has at least $\displaystyle 6$ elements.
[i]Mihai Baluna[/i]
1977 USAMO, 2
$ ABC$ and $ A'B'C'$ are two triangles in the same plane such that the lines $ AA',BB',CC'$ are mutually parallel. Let $ [ABC]$ denotes the area of triangle $ ABC$ with an appropriate $ \pm$ sign, etc.; prove that
\[ 3([ABC] \plus{} [A'B'C']) \equal{} [AB'C'] \plus{} [BC'A'] \plus{} [CA'B'] \plus{} [A'BC] \plus{} [B'CA] \plus{} [C'AB].\]
2004 Germany Team Selection Test, 1
Let $a_{ij}$ $i=1,2,3$; $j=1,2,3$ be real numbers such that $a_{ij}$ is positive for $i=j$ and negative for $i\neq j$.
Prove the existence of positive real numbers $c_{1}$, $c_{2}$, $c_{3}$ such that the numbers \[a_{11}c_{1}+a_{12}c_{2}+a_{13}c_{3},\qquad a_{21}c_{1}+a_{22}c_{2}+a_{23}c_{3},\qquad a_{31}c_{1}+a_{32}c_{2}+a_{33}c_{3}\] are either all negative, all positive, or all zero.
[i]Proposed by Kiran Kedlaya, USA[/i]
1998 All-Russian Olympiad, 8
A figure $\Phi$ composed of unit squares has the following property: if the squares of an $m \times n$ rectangle ($m,n$ are fixed) are filled with numbers whose sum is positive, the figure $\Phi$ can be placed within the rectangle (possibly after being rotated) so that the sum of the covered numbers is also positive. Prove that a number of such figures can be put on the $m\times n$ rectangle so that each square is covered by the same number of figures.
2003 China Western Mathematical Olympiad, 4
$ 1650$ students are arranged in $ 22$ rows and $ 75$ columns. It is known that in any two columns, the number of pairs of students in the same row and of the same sex is not greater than $ 11$. Prove that the number of boys is not greater than $ 928$.
2010 Romanian Master of Mathematics, 5
Let $n$ be a given positive integer. Say that a set $K$ of points with integer coordinates in the plane is connected if for every pair of points $R, S\in K$, there exists a positive integer $\ell$ and a sequence $R=T_0,T_1, T_2,\ldots ,T_{\ell}=S$ of points in $K$, where each $T_i$ is distance $1$ away from $T_{i+1}$. For such a set $K$, we define the set of vectors
\[\Delta(K)=\{\overrightarrow{RS}\mid R, S\in K\}\]
What is the maximum value of $|\Delta(K)|$ over all connected sets $K$ of $2n+1$ points with integer coordinates in the plane?
[i]Grigory Chelnokov, Russia[/i]
2002 AIME Problems, 11
Let $ABCD$ and $BCFG$ be two faces of a cube with $AB=12.$ A beam of light emanates from vertex $A$ and reflects off face $BCFG$ at point $P,$ which is 7 units from $\overline{BG}$ and 5 units from $\overline{BC}.$ The beam continues to be reflected off the faces of the cube. The length of the light path from the time it leaves point $A$ until it next reaches a vertex of the cube is given by $m\sqrt{n},$ where $m$ and $n$ are integers and $n$ is not divisible by the square of any prime. Find $m+n.$
Gheorghe Țițeica 2025, P3
Consider the plane vectors $\overrightarrow{OA_1},\overrightarrow{OA_2},\dots ,\overrightarrow{OA_n}$ with $n\geq 3$. Suppose that the inequality $$\big|\overrightarrow{OA_1}+\overrightarrow{OA_2}+\dots +\overrightarrow{OA_n}\big|\geq \big|\pm\overrightarrow{OA_1}\pm\overrightarrow{OA_2}\pm\dots \pm\overrightarrow{OA_n}\big|$$ takes place for all choiches of the $\pm$ signs. Show that there exists a line $\ell$ through $O$ such that all points $A_1,A_2,\dots ,A_n$ are all on one side of $\ell$.
[i]Cristi Săvescu[/i]
2010 Putnam, A3
Suppose that the function $h:\mathbb{R}^2\to\mathbb{R}$ has continuous partial derivatives and satisfies the equation
\[h(x,y)=a\frac{\partial h}{\partial x}(x,y)+b\frac{\partial h}{\partial y}(x,y)\]
for some constants $a,b.$ Prove that if there is a constant $M$ such that $|h(x,y)|\le M$ for all $(x,y)$ in $\mathbb{R}^2,$ then $h$ is identically zero.
2002 Iran MO (3rd Round), 10
$H,I,O,N$ are orthogonal center, incenter, circumcenter, and Nagelian point of triangle $ABC$. $I_{a},I_{b},I_{c}$ are excenters of $ABC$ corresponding vertices $A,B,C$. $S$ is point that $O$ is midpoint of $HS$. Prove that centroid of triangles $I_{a}I_{b}I_{c}$ and $SIN$ concide.
2005 Brazil Undergrad MO, 3
Let $v_1,v_2,\ldots,v_n$ vectors in $\mathbb{R}^2$ such that $|v_i|\leq 1$ for $1 \leq i \leq n$ and $\sum_{i=1}^n v_i=0$. Prove that there exists a permutation $\sigma$ of $(1,2,\ldots,n)$ such that $\left|\sum_{j=1}^k v_{\sigma(j)}\right| \leq\sqrt 5$ for every $k$, $1\leq k \leq n$.
[i]Remark[/i]: If $v = (x,y)\in \mathbb{R}^2$, $|v| = \sqrt{x^2 + y^2}$.
2022 CIIM, 2
Let $v \in \mathbb{R}^2$ a vector of length 1 and $A$ a $2 \times 2$ matrix with real entries such that:
(i) The vectors $A v, A^2 v$ y $A^3 v$ are also of length 1.
(ii) The vector $A^2 v$ isn't equal to $\pm v$ nor to $\pm A v$.
Prove that $A^t A=I_2$.