Found problems: 560
2008 Junior Balkan MO, 4
A $ 4\times 4$ table is divided into $ 16$ white unit square cells. Two cells are called neighbors if they share a common side. A [i]move[/i] consists in choosing a cell and the colors of neighbors from white to black or from black to white. After exactly $ n$ moves all the $ 16$ cells were black. Find all possible values of $ n$.
1992 All Soviet Union Mathematical Olympiad, 579
$1992$ vectors are given in the plane. Two players pick unpicked vectors alternately. The winner is the one whose vectors sum to a vector with larger magnitude (or they draw if the magnitudes are the same). Can the first player always avoid losing?
2014 Purple Comet Problems, 22
For positive integers $m$ and $n$, let $r(m, n)$ be the remainder when $m$ is divided by $n$. Find the smallest positive integer $m$ such that
\[r(m, 1) + r(m, 2) + r(m, 3) +\cdots+ r(m, 10) = 4.\]
1995 Putnam, 5
Let $x_1,x_2,\cdots, x_n$ be real valued differentiable functions of a variable $t$ which satisfy
\begin{align*}
& \frac{\mathrm{d}x_1}{\mathrm{d}t}=a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n\\
& \frac{\mathrm{d}x_2}{\mathrm{d}t}=a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n\\
& \;\qquad \vdots \\
& \frac{\mathrm{d}x_n}{\mathrm{d}t}=a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n\\
\end{align*}
For some constants $a_{ij}>0$. Suppose that $\lim_{t \to \infty}x_i(t)=0$ for all $1\le i \le n$. Are the functions $x_i$ necessarily linearly dependent?
1991 IMO Shortlist, 3
Let $ S$ be any point on the circumscribed circle of $ PQR.$ Then the feet of the perpendiculars from S to the three sides of the triangle lie on the same straight line. Denote this line by $ l(S, PQR).$ Suppose that the hexagon $ ABCDEF$ is inscribed in a circle. Show that the four lines $ l(A,BDF),$ $ l(B,ACE),$ $ l(D,ABF),$ and $ l(E,ABC)$ intersect at one point if and only if $ CDEF$ is a rectangle.
1993 Bulgaria National Olympiad, 5
Let $Oxy$ be a fixed rectangular coordinate system in the plane.
Each ordered pair of points $A_1, A_2$ from the same plane which are different from O and have coordinates $x_1, y_1$ and $x_2, y_2$ respectively is associated with real number $f(A_1,A_2)$ in such a way that the following conditions are satisfied:
(a) If $OA_1 = OB_1$, $OA_2 = OB_2$ and $A_1A_2 = B_1B_2$ then $f(A_1,A_2) = f(B_1,B_2)$.
(b) There exists a polynomial of second degree $F(u,v,w,z)$ such that $f(A_1,A_2)=F(x_1,y_1,x_2,y_2)$.
(c) There exists such a number $\phi \in (0,\pi)$ that for every two points $A_1, A_2$ for which $\angle A_1OA_2 = \phi$ is satisfied $f(A_1,A_2) = 0$.
(d) If the points $A_1, A_2$ are such that the triangle $OA_1A_2$ is equilateral with side $1$ then$ f(A_1,A_2) = \frac12$.
Prove that $f(A_1,A_2) = \overrightarrow{OA_1} \cdot \overrightarrow{OA_2}$ for each ordered pair of points $A_1, A_2$.
1966 IMO Shortlist, 17
Let $ABCD$ and $A^{\prime }B^{\prime}C^{\prime }D^{\prime }$ be two arbitrary parallelograms in the space, and let $M,$ $N,$ $P,$ $Q$ be points dividing the segments $AA^{\prime },$ $BB^{\prime },$ $CC^{\prime },$ $DD^{\prime }$ in equal ratios.
[b]a.)[/b] Prove that the quadrilateral $MNPQ$ is a parallelogram.
[b]b.)[/b] What is the locus of the center of the parallelogram $MNPQ,$ when the point $M$ moves on the segment $AA^{\prime }$ ?
(Consecutive vertices of the parallelograms are labelled in alphabetical order.
2002 JBMO ShortLists, 5
Let $ a,b,c$ be positive real numbers. Prove the inequality:
$ \frac {a^3}{b^2} \plus{} \frac {b^3}{c^2} \plus{} \frac {c^3}{a^2}\ge \frac {a^2}{b} \plus{} \frac {b^2}{c} \plus{} \frac {c^2}{a}$
1965 Miklós Schweitzer, 2
Let $ R$ be a finite commutative ring. Prove that $ R$ has a multiplicative identity element $ (1)$ if and only if the annihilator of $ R$ is $ 0$ (that is, $ aR\equal{}0, \;a\in R $ imply $ a\equal{}0$).
2011 Today's Calculation Of Integral, 690
Find the maximum value of $f(x)=\int_0^1 t\sin (x+\pi t)\ dt$.
2001 APMO, 3
Two equal-sized regular $n$-gons intersect to form a $2n$-gon $C$. Prove that the sum of the sides of $C$ which form part of one $n$-gon equals half the perimeter of $C$.
[i]Alternative formulation:[/i]
Let two equal regular $n$-gons $S$ and $T$ be located in the plane such that their intersection $S\cap T$ is a $2n$-gon (with $n\ge 3$). The sides of the polygon $S$ are coloured in red and the sides of $T$ in blue.
Prove that the sum of the lengths of the blue sides of the polygon $S\cap T$ is equal to the sum of the lengths of its red sides.
2009 AIME Problems, 11
Consider the set of all triangles $ OPQ$ where $ O$ is the origin and $ P$ and $ Q$ are distinct points in the plane with nonnegative integer coordinates $ (x,y)$ such that $ 41x\plus{}y \equal{} 2009$. Find the number of such distinct triangles whose area is a positive integer.
2013 Tuymaada Olympiad, 2
$ABCDEF$ is a convex hexagon, such that in it $AC \parallel DF$, $BD \parallel AE$ and $CE \parallel BF$. Prove that
\[AB^2+CD^2+EF^2=BC^2+DE^2+AF^2.\]
[i]N. Sedrakyan[/i]
1954 Moscow Mathematical Olympiad, 265
From an arbitrary point $O$ inside a convex $n$-gon, perpendiculars are drawn on (extensions of the) sides of the $n$-gon. Along each perpendicular a vector is constructed, starting from $O$, directed towards the side onto which the perpendicular is drawn, and of length equal to half the length of the corresponding side. Find the sum of these vectors.
2000 Mediterranean Mathematics Olympiad, 4
Let $P,Q,R,S$ be the midpoints of the sides $BC,CD,DA,AB$ of a convex quadrilateral, respectively. Prove that
\[4(AP^2+BQ^2+CR^2+DS^2)\le 5(AB^2+BC^2+CD^2+DA^2)\]
2005 Germany Team Selection Test, 3
Let $ABC$ be a triangle with orthocenter $H$, incenter $I$ and centroid $S$, and let $d$ be the diameter of the circumcircle of triangle $ABC$. Prove the inequality
\[9\cdot HS^2+4\left(AH\cdot AI+BH\cdot BI+CH\cdot CI\right)\geq 3d^2,\]
and determine when equality holds.
2004 Estonia National Olympiad, 3
Let $K, L, M$ be the feet of the altitudes drawn from the vertices $A, B, C$ of triangle $ABC$, respectively. Prove that $\overrightarrow{AK} + \overrightarrow{BL} + \overrightarrow{CM} = \overrightarrow{O}$ if and only if $ABC$ is equilateral.
2013 Putnam, 5
For $m\ge 3,$ a list of $\binom m3$ real numbers $a_{ijk}$ $(1\le i<j<k\le m)$ is said to be [i]area definite[/i] for $\mathbb{R}^n$ if the inequality \[\sum_{1\le i<j<k\le m}a_{ijk}\cdot\text{Area}(\triangle A_iA_jA_k)\ge0\] holds for every choice of $m$ points $A_1,\dots,A_m$ in $\mathbb{R}^n.$ For example, the list of four numbers $a_{123}=a_{124}=a_{134}=1, a_{234}=-1$ is area definite for $\mathbb{R}^2.$ Prove that if a list of $\binom m3$ numbers is area definite for $\mathbb{R}^2,$ then it is area definite for $\mathbb{R}^3.$
2014 Online Math Open Problems, 24
Let $\mathcal A = A_0A_1A_2A_3 \cdots A_{2013}A_{2014}$ be a [i]regular 2014-simplex[/i], meaning the $2015$ vertices of $\mathcal A$ lie in $2014$-dimensional Euclidean space and there exists a constant $c > 0$ such that $A_iA_j = c$ for any $0 \le i < j \le 2014$. Let $O = (0,0,0,\dots,0)$, $A_0 = (1,0,0,\dots,0)$, and suppose $A_iO$ has length $1$ for $i=0,1,\dots,2014$. Set $P=(20,14,20,14,\dots,20,14)$. Find the remainder when \[PA_0^2 + PA_1^2 + \dots + PA_{2014}^2 \] is divided by $10^6$.
[i]Proposed by Robin Park[/i]
1995 China Team Selection Test, 3
21 people take a test with 15 true or false questions. It is known that every 2 people have at least 1 correct answer in common. What is the minimum number of people that could have correctly answered the question which the most people were correct on?
2015 District Olympiad, 1
Consider the parallelogram $ ABCD, $ whose diagonals intersect at $ O. $ The bisector of the angle $ \angle DAC $ and that of $ \angle DBC $ intersect each other at $ T. $ Moreover, $ \overrightarrow{TD} +\overrightarrow{TC} =\overrightarrow{TO} . $
Find the angles of the triangle $ ABT. $
PEN R Problems, 2
Show there do not exist four points in the Euclidean plane such that the pairwise distances between the points are all odd integers.
2010 Brazil National Olympiad, 3
What is the biggest shadow that a cube of side length $1$ can have, with the sun at its peak?
Note: "The biggest shadow of a figure with the sun at its peak" is understood to be the biggest possible area of the orthogonal projection of the figure on a plane.
2006 Belarusian National Olympiad, 3
A finite set $V \in Z^2$ of vectors with integer coordinates is chosen on the plane. Each of them is painted one of the $n$ colors. The color is [i]suitable[/i] for the vector if this vector may be presented as' a linear combination (with integer coefficients) of the vectors from $V$ of this color. It is known,that for any vector from $Z^2$ there exist a suitable color. Find all $n$ such that there must exist a color which is suitable for any vector from $Z^2$ .
(V. Lebed)
1987 All Soviet Union Mathematical Olympiad, 457
Some points with the integer coordinates are marked on the coordinate plane. Given a set of nonzero vectors. It is known, that if you apply the beginnings of those vectors to the arbitrary marked point, than there will be more marked ends of the vectors, than not marked. Prove that there is infinite number of marked points.