This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2000 Greece Junior Math Olympiad, 4

Tags:
Four pupils decided to buy some mathematical books so that (a) everybody buys exactly three different books , and (b) every two of the pupils buy exactly one book in common. What are the greatest and smallest number of different books they can buy?

2022 Taiwan TST Round 2, G

Tags: geometry
Let $ABC$ be a triangle with circumcenter $O$ and orthocenter $H$ such that $OH$ is parallel to $BC$. Let $AH$ intersects again with the circumcircle of $ABC$ at $X$, and let $XB, XC$ intersect with $OH$ at $Y, Z$, respectively. If the projections of $Y,Z$ to $AB,AC$ are $P,Q$, respectively, show that $PQ$ bisects $BC$. [i]Proposed by usjl[/i]

2024 District Olympiad, P3

Let $a,b,c\in\mathbb{C}\setminus\left\{0\right\}$ such that $|a|=|b|=|c|$ and $A=a+b+c$ respectively $B=abc$ are both real numbers. Prove that $ C_n=a^n+b^n+c^n$ is also a real number$,$ $(\forall)n\in\mathbb{N}.$

2014 Saudi Arabia GMO TST, 1

Let $ABC$ be a triangle with $\angle A < \angle B \le \angle C$, $M$ and $N$ the midpoints of sides $CA$ and $AB$, respectively, and $P$ and $Q$ the projections of $B$ and $C$ on the medians $CN$ and $BM$, respectively. Prove that the quadrilateral $MNPQ$ is cyclic.

2011 Today's Calculation Of Integral, 752

Find $f_n(x)$ such that $f_1(x)=x,\ f_n(x)=\int_0^x tf_{n-1}(x-t)dt\ (n=2,\ 3,\ \cdots).$

2017 China Team Selection Test, 2

Let $ABCD$ be a non-cyclic convex quadrilateral. The feet of perpendiculars from $A$ to $BC,BD,CD$ are $P,Q,R$ respectively, where $P,Q$ lie on segments $BC,BD$ and $R$ lies on $CD$ extended. The feet of perpendiculars from $D$ to $AC,BC,AB$ are $X,Y,Z$ respectively, where $X,Y$ lie on segments $AC,BC$ and $Z$ lies on $BA$ extended. Let the orthocenter of $\triangle ABD$ be $H$. Prove that the common chord of circumcircles of $\triangle PQR$ and $\triangle XYZ$ bisects $BH$.

1974 IMO Shortlist, 6

Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \] cannot be divided by $5$.

1976 IMO Longlists, 30

Prove that if $P(x) = (x-a)^kQ(x)$, where $k$ is a positive integer, $a$ is a nonzero real number, $Q(x)$ is a nonzero polynomial, then $P(x)$ has at least $k + 1$ nonzero coefficients.

2009 Tournament Of Towns, 1

Tags:
We only know that the password of a safe consists of $7$ different digits. The safe will open if we enter $7$ different digits, and one of them matches the corresponding digit of the password. Can we open this safe in less than $7$ attempts? [i](5 points for Juniors and 4 points for Seniors)[/i]

2022 BMT, 4

Tags:
Richard and Shreyas are arm wrestling against each other. They will play $10$ rounds, and in each round, there is exactly one winner. If the same person wins in consecutive rounds, these rounds are considered part of the same “streak”. How many possible outcomes are there in which there are strictly more than $3$ streaks? For example, if we denote Richard winning by $R$ and Shreyas winning by $S,$ $SSRSSRRRRR$ is one such outcome, with $4$ streaks.

1982 All Soviet Union Mathematical Olympiad, 343

Every square on the infinite sheet of cross-lined paper contains some real number. Prove that some square contains a number that does not exceed at least four of eight neighbouring numbers.

2024 Bulgarian Autumn Math Competition, 12.1

Tags: sequence , limit , algebra
Let $a_0,a_1,a_2 \dots a_n, \dots$ be an infinite sequence of real numbers, defined by $$a_0 = c$$ $$a_{n+1} = {a_n}^2+\frac{a_n}{2}+c$$ for some real $c > 0$. Find all values of $c$ for which the sequence converges and the limit for those values.

1963 Czech and Slovak Olympiad III A, 4

Consider two quadratic equations \begin{align*}x^2+ax+b&=0, \\ x^2+cx+d&=0,\end{align*} with real coefficients. Find necessary and sufficient conditions such that the first equation has (real) roots $x,x_1,$ the second $x,x_2$ and $x>0,x_1>x_2$.

2020 Brazil National Olympiad, 3

Tags: powers of 2
Consider an inifinte sequence $x_1, x_2,\dots$ of positive integers such that, for every integer $n\geq 1$: [list] [*]If $x_n$ is even, $x_{n+1}=\dfrac{x_n}{2}$; [*]If $x_n$ is odd, $x_{n+1}=\dfrac{x_n-1}{2}+2^{k-1}$, where $2^{k-1}\leq x_n<2^k$.[/list] Determine the smaller possible value of $x_1$ for which $2020$ is in the sequence.

2021 Indonesia TST, C

A square board with a size of $2020 \times 2020$ is divided into $2020^2$ small squares of size $1 \times 1$. Each of these small squares will be coloured black or white. Determine the number of ways to colour the board such that for every $2\times 2$ square, which consists of $4$ small squares, contains $2$ black small squares and $2$ white small squares.

1908 Eotvos Mathematical Competition, 1

Given two odd integers $a$ and $b$; prove that $a^3 -b^3$ is divisible by $2^n$ if and only if $a-b$ is divisible by $2^n$.

JOM 2015 Shortlist, C1

Baron and Peter are playing a game. They are given a simple finite graph $G$ with $n\ge 3$ vertex and $k$ edges that connects the vertices. First Peter labels two vertices A and B, and places a counter at A. Baron starts first. A move for Baron is move the counter along an edge. Peter's move is to remove an edge from the graph. Baron wins if he reaches $B$, otherwise Peter wins. Given the value of $n$, what is the largest $k$ so that Peter can always win?

2022 CMIMC, 7

Tags: team
A $3\times2\times2$ right rectangular prism has one of its edges with length $3$ replaced with an edge of length $5$ parallel to the original edge. The other $11$ edges remain the same length, and the $6$ vertices that are not endpoints of the replaced edge remain in place. The resulting convex solid has $8$ faces, as shown below. Find the volume of the solid. [i]Proposed by Justin Hsieh[/i]

2003 All-Russian Olympiad, 4

Let $B$ and $C$ be arbitrary points on sides $AP$ and $PD$ respectively of an acute triangle $APD$. The diagonals of the quadrilateral $ABCD$ meet at $Q$, and $H_1,H_2$ are the orthocenters of triangles $APD$ and $BPC$, respectively. Prove that if the line $H_1H_2$ passes through the intersection point $X \ (X \neq Q)$ of the circumcircles of triangles $ABQ$ and $CDQ$, then it also passes through the intersection point $Y \ (Y \neq Q)$ of the circumcircles of triangles $BCQ$ and $ADQ.$

2015 BMT Spring, Tie 1

Tags: geometry
Let $ABCD$ be a parallelogram. Suppose that $E$ is on line $DC$ such that $C$ lies on segment $ED$. Then say lines $AE$ and $BD$ intersect at $X$ and lines $CX$ intersects AB at F. If $AB = 7$,$ BC = 13$, and $CE = 91$, then find $\frac{AF}{FB}$.

2018 Germany Team Selection Test, 2

Let $ABCDE$ be a convex pentagon such that $AB=BC=CD$, $\angle{EAB}=\angle{BCD}$, and $\angle{EDC}=\angle{CBA}$. Prove that the perpendicular line from $E$ to $BC$ and the line segments $AC$ and $BD$ are concurrent.

2009 Germany Team Selection Test, 1

Tags: geometry
Let $ ABCD$ be a chordal/cyclic quadrilateral. Consider points $ P,Q$ on $ AB$ and $ R,S$ on $ CD$ with \[ \overline{AP}: \overline{PB} \equal{} \overline{CS}: \overline{SD}, \quad \overline{AQ}: \overline{QB} \equal{} \overline{CR}: \overline{RD}.\] How to choose $ P,Q,R,S$ such that $ \overline{PR} \cdot \overline{AB} \plus{} \overline{QS} \cdot \overline{CD}$ is minimal?

2016 CCA Math Bonanza, I6

Let $a,b,c$ be non-zero real numbers. The lines $ax + by = c$ and $bx + cy = a$ are perpendicular and intersect at a point $P$ such that $P$ also lies on the line $y=2x$. Compute the coordinates of point $P$. [i]2016 CCA Math Bonanza Individual #6[/i]

1979 VTRMC, 4

Let $f(x)$ be continuously differentiable on $(0,\infty)$ and suppose $ \lim _ { x \rightarrow \infty } f ^ { \prime } ( x ) = 0 $. Prove that $ \lim _ { x \rightarrow \infty } f ( x ) / x = 0 $.

2010 Belarus Team Selection Test, 8.2

Prove that for positive real numbers $a, b, c$ such that $abc=1$, the following inequality holds: $$\frac{a}{b(a+b)}+\frac{b}{c(b+c)}+\frac{c}{a(c+a)} \ge \frac32$$ (I. Voronovich)