This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2017 Harvard-MIT Mathematics Tournament, 9

Tags: geometry
Let $ABC$ be a triangle, and let $BCDE$, $CAFG$, $ABHI$ be squares that do not overlap the triangle with centers $X$, $Y$, $Z$ respectively. Given that $AX=6$, $BY=7$, and $CA=8$, find the area of triangle $XYZ$.

2017 Romanian Masters In Mathematics, 5

Fix an integer $n \geq 2$. An $n\times n$ sieve is an $n\times n$ array with $n$ cells removed so that exactly one cell is removed from every row and every column. A stick is a $1\times k$ or $k\times 1$ array for any positive integer $k$. For any sieve $A$, let $m(A)$ be the minimal number of sticks required to partition $A$. Find all possible values of $m(A)$, as $A$ varies over all possible $n\times n$ sieves. [i]Palmer Mebane[/i]

2022 Singapore MO Open, Q3

Find all functions $f:\mathbb{Z}^+\rightarrow \mathbb{Z}^+$ satisfying $$m!!+n!!\mid f(m)!!+f(n)!!$$for each $m,n\in \mathbb{Z}^+$, where $n!!=(n!)!$ for all $n\in \mathbb{Z}^+$. [i]Proposed by DVDthe1st[/i]

2013 BMT Spring, 20

Tags: algebra
A sequence $a_n$ is defined such that $a_0 =\frac{1 + \sqrt3}{2}$ and $a_{n+1} =\sqrt{a_n}$ for $n \ge 0$. Evaluate $$\prod_{k=0}^{\infty} 1 - a_k + a^2_k$$

2024 CCA Math Bonanza, T2

Echo the gecko starts on the point $(0, 0)$ in the 2D coordinate plane. Every minute, starting at the end of the first minute, he'll teleport $1$ unit up, left, right, or down with equal probability. Echo dies the moment he lands on a point that is more than $1$ unit away from the origin. The average number of minutes he'll live can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [i]Team #2[/i]

2010 Tournament Of Towns, 3

An angle is given in a plane. Using only a compass, one must find out $(a)$ if this angle is acute. Find the minimal number of circles one must draw to be sure. $(b)$ if this angle equals $31^{\circ}$.(One may draw as many circles as one needs).

2025 India STEMS Category A, 5

Let $ABC$ be an acute scalene triangle. Let $D, E$ be points on segments $AB, AC$ respectively, such that $BD=CE$. Prove that the nine-point centers of $ADE$, $ACD$, $ABC$, $AEB$ form a rhombus. [i]Proposed by Malay Mahajan and Siddharth Choppara[/i]

1966 IMO Longlists, 2

Tags: inequalities
Given $n$ positive numbers $a_{1},$ $a_{2},$ $...,$ $a_{n}$ such that $a_{1}\cdot a_{2}\cdot ...\cdot a_{n}=1.$ Prove \[ \left( 1+a_{1}\right) \left( 1+a_{2}\right) ...\left(1+a_{n}\right) \geq 2^{n}.\]

2020 Jozsef Wildt International Math Competition, W3

Let $n \geq 2$ be an integer. Calculate$$\int \limits_{0}^{\frac{\pi}{2}}\frac{\sin x}{\sin^{2n-1}x+\cos^{2n-1}x}dx$$

2018 CMIMC Number Theory, 8

It is given that there exists a unique triple of positive primes $(p,q,r)$ such that $p<q<r$ and \[\dfrac{p^3+q^3+r^3}{p+q+r} = 249.\] Find $r$.

2004 Gheorghe Vranceanu, 3

Consider the function $ f:(-\infty,1]\longrightarrow\mathbb{R} $ defined as $$ f(x)=\left\{ \begin{matrix} \frac{5}{2} +2^x-\frac{1}{2^x} ,& \quad x<-1 \\ 3^{\sqrt{1-x^2}} ,& \quad x\in [-1,1] \end{matrix} \right. . $$ [b]a)[/b] For a fixed parameter, find the roots of $ f-m. $ [b]b)[/b] Study the inversability of the restrictions of $ f $ to $ (-\infty,-1] $ and $ [-1,1] $ and find the inverses of these that admit them. [i]D. Zaharia[/i]

2004 IMO Shortlist, 8

Given a cyclic quadrilateral $ABCD$, let $M$ be the midpoint of the side $CD$, and let $N$ be a point on the circumcircle of triangle $ABM$. Assume that the point $N$ is different from the point $M$ and satisfies $\frac{AN}{BN}=\frac{AM}{BM}$. Prove that the points $E$, $F$, $N$ are collinear, where $E=AC\cap BD$ and $F=BC\cap DA$. [i]Proposed by Dusan Dukic, Serbia and Montenegro[/i]

2016 Saudi Arabia IMO TST, 2

Let $ABCDEF$ be a convex hexagon with $AB = CD = EF$, $BC =DE = FA$ and $\angle A+\angle B = \angle C +\angle D = \angle E +\angle F$. Prove that $\angle A=\angle C=\angle E$ and $\angle B=\angle D=\angle F$. Tran Quang Hung

2010 Saint Petersburg Mathematical Olympiad, 1

$f(x)$ is square trinomial. Is it always possible to find polynomial $g(x)$ with fourth degree, such that $f(g(x))=0$ has not roots?

2013 JBMO Shortlist, 6

Let $P$ and $Q$ be the midpoints of the sides $BC$ and $CD$, respectively in a rectangle $ABCD$. Let $K$ and $M$ be the intersections of the line $PD$ with the lines $QB$ and $QA$, respectively, and let $N$ be the intersection of the lines $PA$ and $QB$. Let $X$, $Y$ and $Z$ be the midpoints of the segments $AN$, $KN$ and $AM$, respectively. Let $\ell_1$ be the line passing through $X$ and perpendicular to $MK$, $\ell_2$ be the line passing through $Y$ and perpendicular to $AM$ and $\ell_3$ the line passing through $Z$ and perpendicular to $KN$. Prove that the lines $\ell_1$, $\ell_2$ and $\ell_3$ are concurrent.

Kvant 2019, M2582

An integer $1$ is written on the blackboard. We are allowed to perform the following operations:to change the number $x$ to $3x+1$ of to $[\frac{x}{2}]$. Prove that we can get all positive integers using this operations.

2022 Dutch IMO TST, 4

In a sequence $a_1, a_2, . . . , a_{1000}$ consisting of $1000$ distinct numbers a pair $(a_i, a_j )$ with $i < j$ is called [i]ascending [/i] if $a_i < a_j$ and [i]descending[/i] if $a_i > a_j$ . Determine the largest positive integer $k$ with the property that every sequence of $1000$ distinct numbers has at least $k$ non-overlapping ascending pairs or at least $k$ non-overlapping descending pairs.

2018 IFYM, Sozopol, 3

We will call one of the cells of a rectangle 11 x 13 “[i]peculiar[/i]” , if after removing it the remaining figure can be cut into squares 2 x 2 and 3 x 3. How many of the 143 cells are “[i]peculiar[/i]”?

2015 Saint Petersburg Mathematical Olympiad, 6

A sequence of integers is defined as follows: $a_1=1,a_2=2,a_3=3$ and for $n>3$, $$a_n=\textsf{The smallest integer not occurring earlier, which is relatively prime to }a_{n-1}\textsf{ but not relatively prime to }a_{n-2}.$$Prove that every natural number occurs exactly once in this sequence. [i]M. Ivanov[/i]

2004 USAMO, 2

Suppose $a_1, \dots, a_n$ are integers whose greatest common divisor is 1. Let $S$ be a set of integers with the following properties: (a) For $i=1, \dots, n$, $a_i \in S$. (b) For $i,j = 1, \dots, n$ (not necessarily distinct), $a_i - a_j \in S$. (c) For any integers $x,y \in S$, if $x+y \in S$, then $x-y \in S$. Prove that $S$ must be equal to the set of all integers.

2003 Indonesia MO, 7

Let $k,m,n$ be positive integers such that $k > n > 1$ and $(k,n) = 1$. If $k-n | k^m - n^{m-1}$, prove that $k \le 2n - 1$.

2011 Polish MO Finals, 2

In a tetrahedron $ABCD$, the four altitudes are concurrent at $H$. The line $DH$ intersects the plane $ABC$ at $P$ and the circumsphere of $ABCD$ at $Q\neq D$. Prove that $PQ=2HP$.

2021 Taiwan APMO Preliminary First Round, 2

(a) Let the incenter of $\triangle ABC$ be $I$. We connect $I$ other $3$ vertices and divide $\triangle ABC$ into $3$ small triangles which has area $2,3$ and $4$. Find the area of the inscribed circle of $\triangle ABC$. (b) Let $ABCD$ be a parallelogram. Point $E,F$ is on $AB,BC$ respectively. If $[AED]=7,[EBF]=3,[CDF]=6$, then find $[DEF].$ (Here $[XYZ]$ denotes the area of $XYZ$)

2007 Junior Balkan Team Selection Tests - Romania, 1

Consider $ \rho$ a semicircle of diameter $ AB$. A parallel to $ AB$ cuts the semicircle at $ C, D$ such that $ AD$ separates $ B, C$. The parallel at $ AD$ through $ C$ intersects the semicircle the second time at $ E$. Let $ F$ be the intersection point of the lines $ BE$ and $ CD$. The parallel through $ F$ at $ AD$ cuts $ AB$ in $ P$. Prove that $ PC$ is tangent to $ \rho$. [i]Author: Cosmin Pohoata[/i]

2013 India Regional Mathematical Olympiad, 5

Let $n \ge 3$ be a natural number and let $P$ be a polygon with $n$ sides. Let $a_1,a_2,\cdots, a_n$ be the lengths of sides of $P$ and let $p$ be its perimeter. Prove that \[\frac{a_1}{p-a_1}+\frac{a_2}{p-a_2}+\cdots + \frac{a_n}{p-a_n} < 2 \]