Found problems: 85335
2020 Taiwan TST Round 1, 1
Let $ABC$ be an acute-angled triangle and let $D, E$, and $F$ be the feet of altitudes from $A, B$, and $C$ to sides $BC, CA$, and $AB$, respectively. Denote by $\omega_B$ and $\omega_C$ the incircles of triangles $BDF$ and $CDE$, and let these circles be tangent to segments $DF$ and $DE$ at $M$ and $N$, respectively. Let line $MN$ meet circles $\omega_B$ and $\omega_C$ again at $P \ne M$ and $Q \ne N$, respectively. Prove that $MP = NQ$.
(Vietnam)
2007 Gheorghe Vranceanu, 4
Let be a sequence $ \left( a_n \right)_{n\geqslant 1} $ of real numbers defined recursively as
$$ a_n=2007+1004n^2-a_{n-1}-a_{n-2}-\cdots -a_2-a_1. $$ Calculate:
$$ \lim_{n\to\infty} \frac{1}{n}\int_1^{a_n} e^{1/\ln t} dt $$
2021 Yasinsky Geometry Olympiad, 3
The segments $AC$ and $BD$ are perpendicular, and $AC$ is twice as large as $BD$ and intersects $BD$ in it in the midpoint. Find the value of the angle $BAD$, if we know that $\angle CAD = \angle CDB$.
(Gregory Filippovsky)
1969 IMO Shortlist, 44
$(MON 5)$ Find the radius of the circle circumscribed about the isosceles triangle whose sides are the solutions of the equation $x^2 - ax + b = 0$.
2022 CMIMC, 12
Let $ABCD$ be a cyclic quadrilateral with $AB=3, BC=2, CD=6, DA=8,$ and circumcircle $\Gamma.$ The tangents to $\Gamma$ at $A$ and $C$ intersect at $P$ and the tangents to $\Gamma$ at $B$ and $D$ intersect at $Q.$ Suppose lines $PB$ and $PD$ intersect $\Gamma$ at points $W \neq B$ and $X \neq D,$ respectively. Similarly, suppose lines $QA$ and $QC$ intersect $\Gamma$ at points $Y \neq A$ and $Z \neq C,$ respectively. What is the value of $\frac{{WX}^2}{{YZ}^2}?$
[i]Proposed by Kyle Lee[/i]
May Olympiad L2 - geometry, 2022.3
Let $ABCD$ be a square, $E$ a point on the side $CD$, and $F$ a point inside the square such that that triangle $BFE$ is isosceles and $\angle BFE = 90^o$ . If $DF=DE$, find the measure of angle $\angle FDE$.
1965 Dutch Mathematical Olympiad, 3
Given are the points $A$ and $B$ in the plane. If $x$ is a straight line is in that plane, and $x$ does not coincide with the perpendicular bisectror of $AB$, then denote the number of points $C$ located at $x$ such that $\vartriangle ABC$ is isosceles, as the "weight of the line $x$”.
Prove that the weight of any line $x$ is at most $5$ and determine the set of points $P$ which has a line with weight $1$, but none with weight $0$.
2015 Saudi Arabia JBMO TST, 1
Find all the triples $(x,y,z)$ of positive integers such that $xy+yz+zx-xyz=2015$
2020 Durer Math Competition Finals, 5
The hexagon $ABCDEF$ has all angles equal . We know that four consecutive sides of the hexagon have lengths $7, 6, 3$ and $5$ in this order. What is the sum of the lengths of the two remaining sides?
2021 Azerbaijan IMO TST, 1
Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$.
Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.
2010 Contests, 2
Joaquim, José and João participate of the worship of triangle $ABC$. It is well known that $ABC$ is a random triangle, nothing special. According to the dogmas of the worship, when they form a triangle which is similar to $ABC$, they will get immortal. Nevertheless, there is a condition: each person must represent a vertice of the triangle. In this case, Joaquim will represent vertice $A$, José vertice $B$ and João will represent vertice $C$. Thus, they must form a triangle which is similar to $ABC$, in this order.
Suppose all three points are in the Euclidean Plane. Once they are very excited to become immortal, they act in the following way: in each instant $t$, Joaquim, for example, will move with constant velocity $v$ to the point in the same semi-plan determined by the line which connects the other two points, and which would create a triangle similar to $ABC$ in the desired order. The other participants act in the same way.
If the velocity of all of them is same, and if they initially have a finite, but sufficiently large life, determine if they can get immortal.
[i]Observation: Initially, Joaquim, José and João do not represent three collinear points in the plane[/i]
Russian TST 2021, P3
Given a natural number $n\geqslant 2$, find the smallest possible number of edges in a graph that has the following property: for any coloring of the vertices of the graph in $n{}$ colors, there is a vertex that has at least two neighbors of the same color as itself.
2016 Online Math Open Problems, 17
Let $n$ be a positive integer. $S$ is a set of points such that the points in $S$ are arranged in a regular $2016$-simplex grid, with an edge of the simplex having $n$ points in $S$. (For example, the $2$-dimensional analog would have $\dfrac{n(n+1)}{2}$ points arranged in an equilateral triangle grid). Each point in $S$ is labeled with a real number such that the following conditions hold:
(a) Not all the points in $S$ are labeled with $0$.
(b) If $\ell$ is a line that is parallel to an edge of the simplex and that passes through at least one point in $S$, then the labels of all the points in $S$ that are on $\ell$ add to $0$.
(c) The labels of the points in $S$ are symmetric along any such line $\ell$.
Find the smallest positive integer $n$ such that this is possible.
Note: A regular $2016$-simplex has $2017$ vertices in $2016$-dimensional space such that the distances between every pair of vertices are equal.
[i]Proposed by James Lin[/i]
1993 China Team Selection Test, 2
Let $S = \{(x,y) | x = 1, 2, \ldots, 1993, y = 1, 2, 3, 4\}$. If $T \subset S$ and there aren't any squares in $T.$ Find the maximum possible value of $|T|.$ The squares in T use points in S as vertices.
2011 International Zhautykov Olympiad, 1
Given is trapezoid $ABCD$, $M$ and $N$ being the midpoints of the bases of $AD$ and $BC$, respectively.
a) Prove that the trapezoid is isosceles if it is known that the intersection point of perpendicular bisectors of the lateral sides belongs to the segment $MN$.
b) Does the statement of point a) remain true if it is only known that the intersection point of perpendicular bisectors of the lateral sides belongs to the line $MN$?
2017 ASDAN Math Tournament, 2
Two distinct positive factors of $144$ are selected at random. What is the probability that their product is greater than $144$?
2001 JBMO ShortLists, 2
Let $P_n \ (n=3,4,5,6,7)$ be the set of positive integers $n^k+n^l+n^m$, where $k,l,m$ are positive integers. Find $n$ such that:
i) In the set $P_n$ there are infinitely many squares.
ii) In the set $P_n$ there are no squares.
2005 AMC 10, 15
An envelope contains eight bills: $ 2$ ones, $ 2$ fives, $ 2$ tens, and $ 2$ twenties. Two bills are drawn at random without replacement. What is the probability that their sum is $ \$ 20$ or more?
$ \textbf{(A)}\ \frac {1}{4}\qquad
\textbf{(B)}\ \frac {2}{7}\qquad
\textbf{(C)}\ \frac {3}{7}\qquad
\textbf{(D)}\ \frac {1}{2}\qquad
\textbf{(E)}\ \frac {2}{3}$
2016 India National Olympiad, P6
Consider a nonconstant arithmetic progression $a_1, a_2,\cdots, a_n,\cdots$. Suppose there exist relatively prime positive integers $p>1$ and $q>1$ such that $a_1^2, a_{p+1}^2$ and $a_{q+1}^2$ are also the terms of the same arithmetic progression. Prove that the terms of the arithmetic progression are all integers.
2013 AMC 12/AHSME, 6
In a recent basketball game, Shenille attempted only three-point shots and two-point shots. She was successful on $20\%$ of her three-point shots and $30\%$ of her two-point shots. Shenille attempted $30$ shots. How many points did she score?
$ \textbf{(A)}\ 12\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 24\qquad\textbf{(D)}\ 30\qquad\textbf{(E)}\ 36 $
2013 Canada National Olympiad, 1
Determine all polynomials $P(x)$ with real coefficients such that
\[(x+1)P(x-1)-(x-1)P(x)\]
is a constant polynomial.
2023 AMC 12/AHSME, 13
A rectangular box $\mathcal{P}$ has distinct edge lengths $a, b,$ and $c$. The sum of the lengths of all $12$ edges of $\mathcal{P}$ is $13$, the sum of the areas of all $6$ faces of $\mathcal{P}$ is $\frac{11}{2}$, and the volume of $\mathcal{P}$ is $\frac{1}{2}$. What is the length of the longest interior diagonal connecting two vertices of $\mathcal{P}$?
$\textbf{(A)}~2\qquad\textbf{(B)}~\frac{3}{8}\qquad\textbf{(C)}~\frac{9}{8}\qquad\textbf{(D)}~\frac{9}{4}\qquad\textbf{(E)}~\frac{3}{2}$
2001 IMO, 6
Let $a > b > c > d$ be positive integers and suppose that \[ ac + bd = (b+d+a-c)(b+d-a+c). \] Prove that $ab + cd$ is not prime.
2011 Saudi Arabia IMO TST, 1
Let $a$ and $b$ be integers such that $a - b = a^2c - b^2d$ for some consecutive integers $c$ and $d$. Prove that $|a - b|$ is a perfect square.
2011 Today's Calculation Of Integral, 727
For positive constant $a$, let $C: y=\frac{a}{2}(e^{\frac{x}{a}}+e^{-\frac{x}{a}})$. Denote by $l(t)$ the length of the part $a\leq y\leq t$ for $C$ and denote by $S(t)$ the area of the part bounded by the line $y=t\ (a<t)$ and $C$. Find $\lim_{t\to\infty} \frac{S(t)}{l(t)\ln t}.$