This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2004 Manhattan Mathematical Olympiad, 1

Tags: geometry
Suppose two triangles have equal areas and equal perimeters. Prove that, if a side of one triangle is congruent to a side of the other triangle, then the two triangles are congruent.

2014 ELMO Shortlist, 11

Let $p$ be a prime satisfying $p^2\mid 2^{p-1}-1$, and let $n$ be a positive integer. Define \[ f(x) = \frac{(x-1)^{p^n}-(x^{p^n}-1)}{p(x-1)}. \] Find the largest positive integer $N$ such that there exist polynomials $g(x)$, $h(x)$ with integer coefficients and an integer $r$ satisfying $f(x) = (x-r)^N g(x) + p \cdot h(x)$. [i]Proposed by Victor Wang[/i]

2022 Austrian MO Beginners' Competition, 3

A semicircle is erected over the segment $AB$ with center $M$. Let $P$ be one point different from $A$ and $B$ on the semicircle and $Q$ the midpoint of the arc of the circle $AP$. The point of intersection of the straight line $BP$ with the parallel to $P Q$ through $M$ is $S$. Prove that $PM = PS$ holds. [i](Karl Czakler)[/i]

PEN M Problems, 34

The sequence of integers $\{ x_{n}\}_{n\ge1}$ is defined as follows: \[x_{1}=1, \;\; x_{n+1}=1+{x_{1}}^{2}+\cdots+{x_{n}}^{2}\;(n=1,2,3 \cdots).\] Prove that there are no squares of natural numbers in this sequence except $x_{1}$.

2014 District Olympiad, 1

Tags: inequalities
[list=a] [*]Prove that for any real numbers $a$ and $b$ the following inequality holds: \[ \left( a^{2}+1\right) \left( b^{2}+1\right) +50\geq2\left( 2a+1\right)\left( 3b+1\right)\] [*]Find all positive integers $n$ and $p$ such that: \[ \left( n^{2}+1\right) \left( p^{2}+1\right) +45=2\left( 2n+1\right)\left( 3p+1\right) \][/list]

2009 Today's Calculation Of Integral, 466

For $ n \equal{} 1,\ 2,\ 3,\ \cdots$, let $ (p_n,\ q_n)\ (p_n > 0,\ q_n > 0)$ be the point of intersection of $ y \equal{} \ln (nx)$ and $ \left(x \minus{} \frac {1}{n}\right)^2 \plus{} y^2 \equal{} 1$. (1) Show that $ 1 \minus{} q_n^2\leq \frac {(e \minus{} 1)^2}{n^2}$ to find $ \lim_{n\to\infty} q_n$. (2) Find $ \lim_{n\to\infty} n\int_{\frac {1}{n}}^{p_n} \ln (nx)\ dx$.

2006 Iran MO (3rd Round), 6

Assume that $C$ is a convex subset of $\mathbb R^{d}$. Suppose that $C_{1},C_{2},\dots,C_{n}$ are translations of $C$ that $C_{i}\cap C\neq\emptyset$ but $C_{i}\cap C_{j}=\emptyset$. Prove that \[n\leq 3^{d}-1\] Prove that $3^{d}-1$ is the best bound. P.S. In the exam problem was given for $n=3$.

Russian TST 2017, P3

Let $a_1,\ldots , a_{p-2}{}$ be nonzero residues modulo an odd prime $p{}$. For every $d\mid p - 1$ there are at least $\lfloor(p - 2)/d\rfloor$ indices $i{}$ for which $p{}$ does not divide $a_i^d-1$. Prove that the product of some of $a_1,\ldots , a_{p-2}$ gives the remainder two modulo $p{}$.

2016 Swedish Mathematical Competition, 2

Determine whether the inequality $$ \left|\sqrt{x^2+2x+5}-\sqrt{x^2-4x+8}\right|<3$$ is valid for all real numbers $x$.

2014 Puerto Rico Team Selection Test, 2

Tags:
We have shortened the usual notation indicating with a sub-index the number of times that a digit is conseutively repeated. For example, $1119900009$ is denoted $1_3 9_2 0_4 9_1$. Find $(x, y, z)$ if $2_x 3_y 5_z + 3_z 5_x 2_y = 5_3 7_2 8_3 5_1 7_3$

2025 Chile TST IMO-Cono, 3

Tags: algebra
Let \( a, b, c, d \) be real numbers such that \( abcd = 1 \), and \[ a + \frac{1}{a} + b + \frac{1}{b} + c + \frac{1}{c} + d + \frac{1}{d} = 0. \] Prove that one of the numbers \( ab, ac \) or \( ad \) is equal to \( -1 \).

2021 Girls in Math at Yale, 5

Tags: college
Let $ATHEM$ be a convex pentagon with $AT = 14$, $TH = MA = 20$, $HE = EM = 15$, and $\angle THE = \angle EMA = 90^{\circ}$. Find the area of $ATHEM$. [i]Proposed by Andrew Wu[/i]

2024 Malaysian IMO Training Camp, 3

Find all primes $p$ such that for any integer $k$, there exist two integers $x$ and $y$ such that $$x^3+2023xy+y^3 \equiv k \pmod p$$ [i]Proposed by Tristan Chaang Tze Shen[/i]

2024/2025 TOURNAMENT OF TOWNS, P3

Tags: geometry
In an acute-angled triangle ${ABC}$ , its incenter $I$ and circumcenter $O$ are marked. The lines ${AI}$ and ${CI}$ have second intersections with the circumcircle of ${ABC}$ at points $N$ and $M$ respectively. The segments ${MN}$ and ${BO}$ intersect at the point $X$ . Prove that the lines ${XI}$ and ${AC}$ are perpendicular. Fedor Ivlev

1966 IMO Shortlist, 19

Construct a triangle given the radii of the excircles.

2014 JHMMC 7 Contest, 15

Rita the painter rolls a fair $6\text{-sided die}$that has $3$ red sides, $2$ yellow sides, and $1$ blue side. Rita rolls the die twice and mixes the colors that the die rolled. What is the probability that she has mixed the color purple?

Mexican Quarantine Mathematical Olympiad, #1

Let $a, b$ and $c$ be real numbers such that $$\lceil a \rceil + \lceil b \rceil + \lceil c \rceil + \lfloor a + b \rfloor + \lfloor b + c \rfloor + \lfloor c + a \rfloor = 2020$$ Prove that $$\lfloor a \rfloor + \lfloor b \rfloor + \lfloor c \rfloor + \lceil a + b + c \rceil \ge 1346$$ Note: $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, and $\lceil x \rceil$ is the smallest integer greater than or equal to $x$. That is, $\lfloor x \rfloor$ is the unique integer satisfying $\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$, and $\lceil x \rceil$ is the unique integer satisfying $\lceil x \rceil - 1 < x \le \lceil x \rceil$. [i]Proposed by Ariel García[/i]

2007 ITest, 53

Tags:
Let $T=\text{TNFTPP}$. Three distinct positive Fibonacci numbers, all greater than $T$, are in arithmetic progression. Let $N$ be the smallest possible value of their sum. Find the remainder when $N$ is divided by $2007$.

2000 Switzerland Team Selection Test, 7

Show that the equation $14x^2 +15y^2 = 7^{2000}$ has no integer solutions.

2012 Harvard-MIT Mathematics Tournament, 3

Tags: geometry
Let $ABC$ be a triangle with incenter $I$. Let the circle centered at $B$ and passing through $I$ intersect side $AB$ at $D$ and let the circle centered at $C$ passing through $I$ intersect side $AC$ at $E$. Suppose $DE$ is the perpendicular bisector of $AI$. What are all possible measures of angle $BAC $ in degrees?

2008 Germany Team Selection Test, 2

The diagonals of a trapezoid $ ABCD$ intersect at point $ P$. Point $ Q$ lies between the parallel lines $ BC$ and $ AD$ such that $ \angle AQD \equal{} \angle CQB$, and line $ CD$ separates points $ P$ and $ Q$. Prove that $ \angle BQP \equal{} \angle DAQ$. [i]Author: Vyacheslav Yasinskiy, Ukraine[/i]

2011 Cuba MO, 7

Find a set of positive integers with the greatest possible number of elements such that the least common multiple of all of them is less than $2011$.

2016 Argentina National Olympiad, 6

Let $AB$ be a segment of length $1$. Several particles start moving simultaneously at constant speeds from $A$ up to$ B$. As soon as a particle reaches $B$ , turns around and goes to $A$; when it reaches $A$, begins to move again towards $ B$ , and so on indefinitely. Find all rational numbers$ r>1$ such that there exists an instant $t$ with the following property: For each $n\ge 1$ , if $n+1$ particles with constant speeds $1,r,r^2,…,r^n$ move as described, at instant $t$, they all lie at the same interior point of segment $AB$.

2013 Kyiv Mathematical Festival, 2

For every positive $a, b,c, d$ such that $a + c \le ac$ and $b + d \le bd$ prove that $\frac{ab}{a + b} +\frac{bc}{b + c} +\frac{cd}{c + d} +\frac{da}{d + a} \ge 4$

2017 Irish Math Olympiad, 4

An equilateral triangle of integer side length $n \geq 1$ is subdivided into small triangles of unit side length, as illustrated in the figure below for $n = 5$. In this diagram a subtriangle is a triangle of any size which is formed by connecting vertices of the small triangles along the grid lines. [img]https://cdn.artofproblemsolving.com/attachments/e/9/17e83ad4872fcf9e97f0479104b9569bf75ad0.jpg[/img] It is desired to color each vertex of the small triangles either red or blue in such a way that there is no subtriangle with all of its vertices having the same color. Let $f(n)$ denote the number of distinct colorings satisfying this condition. Determine, with proof, $f(n)$ for every $n \geq 1$