This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1990 APMO, 5

Show that for every integer $n \geq 6$, there exists a convex hexagon which can be dissected into exactly $n$ congruent triangles.

2011 LMT, 20

Tags: geometry
In the figure below, circle $O$ has two tangents, $\overline{AC}$ and $\overline{BC}$. $\overline{EF}$ is drawn tangent to circle $O$ such that $E$ is on $\overline{AC}$, $F$ is on $\overline{BC}$, and $\overline{EF} \perp \overline{FC}$. Given that the diameter of circle $O$ has length $10$ and that $CO = 13$, what is the area of triangle $EFC$? [img]https://cdn.artofproblemsolving.com/attachments/b/d/4a1bc818a5e138ae61f1f3d68f6ee5adc1ed6f.png[/img]

2021 Korea Winter Program Practice Test, 1

$ $ $ $ $ $ $ $There is a group of more than three airports. For any two airports $A, B$ belonging to this group, if there is an aircraft from $A$ to $ $ $B$, there is an aircraft from $B$ to $ $ $A$. For a list of different airports $A_0,A_1,...A_n$, define this list as a '[color=#00f]route[/color]' if there is an aircraft from $A_i$ to $A_{i+1}$ for each $i=0,1,...,n-1$. Also, define the beginning of this [color=#00f]route[/color] as $A_0$, the end as $A_n$, and the length as $n$. ($n\in \mathbb N$) $ $ $ $ $ $ $ $Now, let's say that for any three different pairs of airports $(A,B,C)$, there is always a [color=#00f]route[/color] $P$ that satisfies the following condition. $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ [b]Condition[/b]: $P$ begins with $A$ and ends with $B$, and does not include $C$. $ $ $ $ $ $When the length of the longest of the existing [color=#00f]route[/color]s is $M$ ($\ge 2$), prove that any two [color=#00f]route[/color]s of length $M$ contain at least two different airports simultaneously.

Estonia Open Senior - geometry, 2016.2.5

The circumcentre of an acute triangle $ABC$ is $O$. Line $AC$ intersects the circumcircle of $AOB$ at a point $X$, in addition to the vertex $A$. Prove that the line $XO$ is perpendicular to the line $BC$.

2002 Moldova National Olympiad, 4

The circumradius of a tetrahedron $ ABCD$ is $ R$, and the lenghts of the segments connecting the vertices $ A,B,C,D$ with the centroids of the opposite faces are equal to $ m_a,m_b,m_c$ and $ m_d$, respectively. Prove that: $ m_a\plus{}m_b\plus{}m_c\plus{}m_d\leq \dfrac{16}{3}R$

2016 CMIMC, 2

Tags: geometry
Let $ABCD$ be an isosceles trapezoid with $AD=BC=15$ such that the distance between its bases $AB$ and $CD$ is $7$. Suppose further that the circles with diameters $\overline{AD}$ and $\overline{BC}$ are tangent to each other. What is the area of the trapezoid?

2022 JBMO Shortlist, C5

Let $S$ be a finite set of points in the plane, such that for each $2$ points $A$ and $B$ in $S$, the segment $AB$ is a side of a regular polygon all of whose vertices are contained in $S$. Find all possible values for the number of elements of $S$. Proposed by [i]Viktor Simjanoski, Macedonia[/i]

Kvant 2019, M2563

Pasha and Vova play the following game, making moves in turn; Pasha moves first. Initially, they have a large piece of plasticine. By a move, Pasha cuts one of the existing pieces into three(of arbitrary sizes), and Vova merges two existing pieces into one. Pasha wins if at some point there appear to be $100$ pieces of equal weights. Can Vova prevent Pasha's win?

2021 Regional Olympiad of Mexico Center Zone, 5

Let $ABCD$ be a parallelogram. Half-circles $\omega_1,\omega_2,\omega_3$ and $\omega_4$ with diameters $AB,BC,CD$ and $DA$, respectively, are erected on the exterior of $ABCD$. Line $l_1$ is parallel to $BC$ and cuts $\omega_1$ at $X$, segment $AB$ at $P$, segment $CD$ at $R$ and $\omega_3$ at $Z$. Line $l_2$ is parallel to $AB$ and cuts $\omega_2$ at $Y$, segment $BC$ at $Q$, segment $DA$ at $S$ and $\omega_4$ at $W$. If $XP\cdot RZ=YQ\cdot SW$, prove that $PQRS$ is cyclic. [i]Proposed by José Alejandro Reyes González[/i]

2016 Saudi Arabia Pre-TST, 2.1

1) Prove that there are infinitely many positive integers $n$ such that there exists a permutation of $1, 2, 3, . . . , n$ with the property that the difference between any two adjacent numbers is equal to either $2015$ or $2016$. 2) Let $k$ be a positive integer. Is the statement in 1) still true if we replace the numbers $2015$ and $2016$ by $k$ and $k + 2016$, respectively?

2020 Harvard-MIT Mathematics Tournament, 8

Tags:
Let $\Gamma_1$ and $\Gamma_2$ be concentric circles with radii $1$ and $2$, respectively. Four points are chosen on the circumference of $\Gamma_2$ independently and uniformly at random, and are then connected to form a convex quadrilateral. What is the probability that the perimeter of this quadrilateral intersects $\Gamma_1$? [i]Proposed by Yuan Yao.[/i]

2020 GQMO, 4

For all real numbers $x$, we denote by $\lfloor x \rfloor$ the largest integer that does not exceed $x$. Find all functions $f$ that are defined on the set of all real numbers, take real values, and satisfy the equality \[f(x + y) = (-1)^{\lfloor y \rfloor} f(x) + (-1)^{\lfloor x \rfloor} f(y)\] for all real numbers $x$ and $y$. [i]Navneel Singhal, India[/i]

2016 Nigerian Senior MO Round 2, Problem 5

A solid pyramid $TABCD$, with a quadrilateral base $ABCD$ is to be coloured on each of the five faces such that no two faces with a common edge will have the same colour. If five different colours are available, what is the number of ways to colour the pyramid?

2017 AMC 12/AHSME, 7

Tags: function
Define a function on the positive integers recursively by $f(1) = 2$, $f(n) = f(n-1) + 1$ if $n$ is even, and $f(n) = f(n-2) + 2$ if $n$ is odd and greater than $1$. What is $f(2017)$? $\textbf{(A) } 2017 \qquad \textbf{(B) } 2018 \qquad \textbf{(C) } 4034 \qquad \textbf{(D) } 4035 \qquad \textbf{(E) } 4036$

2023 ISI Entrance UGB, 6

Let $\{u_n\}_{n \ge 1}$ be a sequence of real numbers defined as $u_1 = 1$ and \[ u_{n+1} = u_n + \frac{1}{u_n} \text{ for all $n \ge 1$.}\] Prove that $u_n \le \frac{3\sqrt{n}}{2}$ for all $n$.

2022 Korea Winter Program Practice Test, 2

Let $n\ge 2$ be a positive integer. There are $n$ real coefficient polynomials $P_1(x),P_2(x),\cdots ,P_n(x)$ which is not all the same, and their leading coefficients are positive. Prove that $$\deg(P_1^n+P_2^n+\cdots +P_n^n-nP_1P_2\cdots P_n)\ge (n-2)\max_{1\le i\le n}(\deg P_i)$$ and find when the equality holds.

2018 Hanoi Open Mathematics Competitions, 3

Consider all triples $(x,y,p)$ of positive integers, where $p$ is a prime number, such that $4x^2 + 8y^2 + (2x-3y)p-12xy = 0$. Which below number is a perfect square number for every such triple $(x,y, p)$? A. $4y + 1$ B. $2y + 1$ C. $8y + 1$ D. $5y - 3$ E. $8y - 1$

2016 Romania Team Selection Tests, 1

Determine the planar finite configurations $C$ consisting of at least $3$ points, satisfying the following conditions; if $x$ and $y$ are distinct points of $C$, there exist $z\in C$ such that $xyz$ are three vertices of equilateral triangles

2014 India IMO Training Camp, 1

Let $x$ and $y$ be rational numbers, such that $x^{5}+y^{5}=2x^{2}y^{2}$. Prove that $1-xy$ is the square of a rational number.

2013 Hong kong National Olympiad, 4

In a chess tournament there are $n>2$ players. Every two players play against each other exactly once. It is known that exactly $n$ games end as a tie. For any set $S$ of players, including $A$ and $B$, we say that $A$ [i]admires[/i] $B$ [i]in that set [/i]if i) $A$ does not beat $B$; or ii) there exists a sequence of players $C_1,C_2,\ldots,C_k$ in $S$, such that $A$ does not beat $C_1$, $C_k$ does not beat $B$, and $C_i$ does not beat $C_{i+1}$ for $1\le i\le k-1$. A set of four players is said to be [i]harmonic[/i] if each of the four players admires everyone else in the set. Find, in terms of $n$, the largest possible number of harmonic sets.

2016 Postal Coaching, 4

Consider a $2n\times 2n$ chessboard with all the $4n^2$ cells being white to start with. The following operation is allowed to be performed any number of times: "Three consecutive cells (in a row or column) are recolored (a white cell is colored black and a black cell is colored white)." Find all possible values of $n\ge 2$ for which using the above operation one can obtain the normal chess coloring of the given board.

2020 LIMIT Category 1, 19

Tags: limit , factorial , algebra
Let $a=2019^{1009}, b=2019!$ and $c=1010^{2019}$, then which of the following is true? (A)$c<b<a$ (B)$a<b<c$ (C)$b<a<c$ (D)$b<c<a$

2022 JBMO Shortlist, C4

We call an even positive integer $n$ [i]nice[/i] if the set $\{1, 2, \dots, n\}$ can be partitioned into $\frac{n}{2}$ two-element subsets, such that the sum of the elements in each subset is a power of $3$. For example, $6$ is nice, because the set $\{1, 2, 3, 4, 5, 6\}$ can be partitioned into subsets $\{1, 2\}$, $\{3, 6\}$, $\{4, 5\}$. Find the number of nice positive integers which are smaller than $3^{2022}$.

2015 AMC 8, 11

Tags:
In the small country of Mathland, all automobile license plates have four symbols. The first must be a vowel (A, E, I, O, or U), the second and third must be two different letters among the 21 non-vowels, and the fourth must be a digit (0 through 9). If the symbols are chosen at random subject to these conditions, what is the probability that the plate will read "AMC8"? $ \textbf{(A) } \frac{1}{22,050} \qquad \textbf{(B) } \frac{1}{21,000}\qquad \textbf{(C) } \frac{1}{10,500}\qquad \textbf{(D) } \frac{1}{2,100} \qquad \textbf{(E) } \frac{1}{1,050} $

III Soros Olympiad 1996 - 97 (Russia), 9.7

Find the side of the smallest regular triangle that can be inscribed in a right triangle with an acute angle of $30^o$ and a hypotenuse of $2$. (All vertices of the required regular triangle must be located on different sides of this right triangle.)