This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2013 National Olympiad First Round, 16

Tags: probability
$16$ white and $4$ red balls that are not identical are distributed randomly into $4$ boxes which contain at most $5$ balls. What is the probability that each box contains exactly $1$ red ball? $ \textbf{(A)}\ \dfrac{5}{64} \qquad\textbf{(B)}\ \dfrac{1}{8} \qquad\textbf{(C)}\ \dfrac{4^4}{\binom{16}{4}} \qquad\textbf{(D)}\ \dfrac{5^4}{\binom{20}{4}} \qquad\textbf{(E)}\ \dfrac{3}{32} $

2014 Contests, 2

Let $ABCD$ be a trapezoid with bases $AB$ and $CD$, inscribed in a circle of center $O$. Let $P$ be the intersection of the lines $BC$ and $AD$. A circle through $O$ and $P$ intersects the segments $BC$ and $AD$ at interior points $F$ and $G$, respectively. Show that $BF=DG$.

2019 Ukraine Team Selection Test, 3

Given an acute triangle $ABC$ . It's altitudes $AA_1 , BB_1$ and $CC_1$ intersect at a point $H$ , the orthocenter of $\vartriangle ABC$. Let the lines $B_1C_1$ and $AA_1$ intersect at a point $K$, point $M$ be the midpoint of the segment $AH$. Prove that the circumscribed circle of $\vartriangle MKB_1$ touches the circumscribed circle of $\vartriangle ABC$ if and only if $BA1 = 3A1C$. (Bondarenko Mykhailo)

1972 AMC 12/AHSME, 6

Tags: logarithm
If $3^{2x}+9=10(3^{x})$, then the value of $(x^2+1)$ is $\textbf{(A) }1\text{ only}\qquad\textbf{(B) }5\text{ only}\qquad\textbf{(C) }1\text{ or }5\qquad\textbf{(D) }2\qquad \textbf{(E) }10$

1989 IMO Shortlist, 15

Let $ a, b, c, d,m, n \in \mathbb{Z}^\plus{}$ such that \[ a^2\plus{}b^2\plus{}c^2\plus{}d^2 \equal{} 1989,\] \[ a\plus{}b\plus{}c\plus{}d \equal{} m^2,\] and the largest of $ a, b, c, d$ is $ n^2.$ Determine, with proof, the values of $m$ and $ n.$

2010 Today's Calculation Of Integral, 526

For a function satisfying $ f'(x) > 0$ for $ a\leq x\leq b$, let $ F(x) \equal{} \int_a^b |f(t) \minus{} f(x)|\ dt$. For what value of $ x$ is $ F(x)$ is minimized?

2015 Princeton University Math Competition, A4/B6

Tags: algebra
Define the sequence $a_i$ as follows: $a_1 = 1, a_2 = 2015$, and $a_n = \frac{na_{n-1}^2}{a_{n-1}+na_{n-2}}$ for $n > 2$. What is the least $k$ such that $a_k < a_{k-1}$?

2014 HMIC, 5

Tags:
Let $n$ be a positive integer, and let $A$ and $B$ be $n\times n$ matrices with complex entries such that $A^2=B^2$. Show that there exists an $n\times n$ invertible matrix $S$ with complex entries that satisfies $S(AB-BA)=(BA-AB)S$.

2016 India Regional Mathematical Olympiad, 4

Find the number of all 6-digits numbers having exactly three odd and three even digits.

2015 Regional Olympiad of Mexico Southeast, 5

In the triangle $ABC$, let $AM$ and $CN$ internal bisectors, with $M$ in $BC$ and $N$ in $AB$. Prove that if $$\frac{\angle BNM}{\angle MNC}=\frac{\angle BMN}{\angle NMA}$$ then $ABC$ is isosceles.

1985 IMO Shortlist, 16

If possible, construct an equilateral triangle whose three vertices are on three given circles.

2017 Sharygin Geometry Olympiad, 8

Let $AK$ and $BL$ be the altitudes of an acute-angled triangle $ABC$, and let $\omega$ be the excircle of $ABC$ touching side $AB$. The common internal tangents to circles $CKL$ and $\omega$ meet $AB$ at points $P$ and $Q$. Prove that $AP =BQ$. [i]Proposed by I.Frolov[/i]

1998 Harvard-MIT Mathematics Tournament, 1

Farmer Tim is lost in the densely-forested Cartesian plane. Starting from the origin he walks a sinusoidal path in search of home; that is, after $t$ minutes he is at position $(t,\sin t)$. Five minutes after he sets out, Alex enters the forest at the origin and sets out in search of Tim. He walks in such a way that after he has been in the forest for $m$ minutes, his position is $(m,\cos t)$. What is the greatest distance between Alex and Farmer Tim while they are walking in these paths?

1983 Miklós Schweitzer, 11

Let $ M^n \subset \mathbb{R}^{n\plus{}1}$ be a complete, connected hypersurface embedded into the Euclidean space. Show that $ M^n$ as a Riemannian manifold decomposes to a nontrivial global metric direct product if and only if it is a real cylinder, that is, $ M^n$ can be decomposed to a direct product of the form $ M^n\equal{}M^k \times \mathbb{R}^{n\minus{}k} \;(k<n)$ as well, where $ M^k$ is a hypersurface in some $ (k\plus{}1)$-dimensional subspace $ E^{k\plus{}1} \subset \mathbb{R}^{n\plus{}1} , \mathbb{R}^{n\minus{}k}$ is the orthogonal complement of $ E^{k\plus{}1}$. [i]Z. Szabo[/i]

2010 Iran MO (3rd Round), 4

[b]carpeting[/b] suppose that $S$ is a figure in the plane such that it's border doesn't contain any lattice points. suppose that $x,y$ are two lattice points with the distance $1$ (we call a point lattice point if it's coordinates are integers). suppose that we can cover the plane with copies of $S$ such that $x,y$ always go on lattice points ( you can rotate or reverse copies of $S$). prove that the area of $S$ is equal to lattice points inside it. time allowed for this question was 1 hour.

2017 Junior Balkan MO, 4

Consider a regular 2n-gon $ P$,$A_1,A_2,\cdots ,A_{2n}$ in the plane ,where $n$ is a positive integer . We say that a point $S$ on one of the sides of $P$ can be seen from a point $E$ that is external to $P$ , if the line segment $SE$ contains no other points that lie on the sides of $P$ except $S$ .We color the sides of $P$ in 3 different colors (ignore the vertices of $P$,we consider them colorless), such that every side is colored in exactly one color, and each color is used at least once . Moreover ,from every point in the plane external to $P$ , points of most 2 different colors on $P$ can be seen .Find the number of distinct such colorings of $P$ (two colorings are considered distinct if at least one of sides is colored differently). [i]Proposed by Viktor Simjanoski, Macedonia[/i] JBMO 2017, Q4

1965 AMC 12/AHSME, 18

Tags: ratio
If $ 1 \minus{} y$ is used as an approximation to the value of $ \frac {1}{1 \plus{} y}$, $ |y| < 1$, the ratio of the error made to the correct value is: $ \textbf{(A)}\ y \qquad \textbf{(B)}\ y^2 \qquad \textbf{(C)}\ \frac {1}{1 \plus{} y} \qquad \textbf{(D)}\ \frac {y}{1 \plus{} y} \qquad \textbf{(E)}\ \frac {y^2}{1 \plus{} y}\qquad$

1965 All Russian Mathematical Olympiad, 063

Given $n^2$ numbers $x_{i,j}$ ($i,j=1,2,...,n$) satisfying the system of $n^3$ equations $$x_{i,j}+x_{j,k}+x_{k,i}=0 \,\,\, (i,j,k = 1,...,n)$$Prove that there exist such numbers $a_1,a_2,...,a_n$, that $x_{i,j}=a_i-a_j$ for all $i,j=1,...n$.

Gheorghe Țițeica 2025, P4

Consider $4n$ points in the plane such that no three of them are collinear ($n\geq 1$). Show that the set of centroids of all the triangles formed by any three of these points contains at least $4n$ elements. [i]Radu Bumbăcea[/i]

2014 National Olympiad First Round, 15

Tags:
What is the sum of distinct real numbers $x$ such that $(2x^2+5x+9)^2=56(x^3+1)$? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ \dfrac{7}{4} \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}\ \dfrac{9}{2} \qquad\textbf{(E)}\ \text{None of the preceding} $

TNO 2008 Senior, 3

Tags: geometry
Luis' friends decided to play a prank on him in his geometry homework. They erased most of a triangle and, instead, drew an equivalent triangle with the sum of its three side lengths. Help Luis complete his homework by reconstructing the original triangle using only a straightedge and compass. Since Luis' method involves measurements, prove that his method results in a triangle longer than the sum of its three sides.

2007 Sharygin Geometry Olympiad, 9

Suppose two convex quadrangles are such that the sides of each of them lie on the perpendicular bisectors of the sides of the other one. Determine their angles,

2016 ASDAN Math Tournament, 26

Tags:
The Euclidean Algorithm on inputs $a$ and $b$ is a way to find the greatest common divisor $\gcd(a,b)$. Suppose WLOG that $a>b$. On each step of the Euclidan Algorithm, we solve the equation $a=bq+r$ for integers $q,r$ such that $0\leq r<b$, and repeat on $b$ and $r$. Thus $\gcd(a,b)=\gcd(b,r)$, and we repeat. If $r=0$, we are done. For example, $\gcd(100,15)=\gcd(15,10)=\gcd(10,5)=5$, because $100=15\cdot6+10$, $15=10\cdot1+5$, and $10=5\cdot2+0$. Thus, the Euclidean Algorithm here takes $3$ steps. What is the largest number of steps that the Euclidean Algorithm can take on some integer inputs $a,b$ where $0<a,b<10^{2016}$? Let $C$ be the actual answer and $A$ be the answer you submit. If $\tfrac{|A-C|}{C}>\tfrac{1}{2}$, then your score will be $0$. Otherwise, your score will be given by $\max\{0,\lceil25-2(\tfrac{|A-C|}{20})^{1/2.2}\rceil\}$.

1977 Spain Mathematical Olympiad, 2

Prove that all square matrices of the form (with $a, b \in R$), $$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$ form a commutative field $K$ when considering the operations of addition and matrix product. Prove also that if $A \in K$ is an element of said field, there exist two matrices of $K$ such that the square of each is equal to $A$.

2006 Lithuania Team Selection Test, 3

Tags: geometry
Inside a convex quadrilateral $ABCD$ there is a point $P$ such that the triangles $PAB, PBC, PCD, PDA$ have equal areas. Prove that the area of $ABCD$ is bisected by one of the diagonals.