Found problems: 85335
2019 India PRMO, 29
Let $ABC$ be an acute angled triangle with $AB=15$ and $BC=8$. Let $D$ be a point on $AB$ such that $BD=BC$. Consider points $E$ on $AC$ such that $\angle DEB=\angle BEC$. If $\alpha$ denotes the product of all possible values of $AE$, find $\lfloor \alpha \rfloor$ the integer part of $\alpha$.
2021 Princeton University Math Competition, B1
Andrew has a four-digit number whose last digit is $2$. Given that this number is divisible by $9$, determine the number of possible values for this number that Andrew could have. Note that leading zeros are not allowed.
2020-21 IOQM India, 22
In triangle $ABC$, let $P$ and $R$ be the feet of the perpendiculars from $A$ onto the external and internal bisectors of $\angle ABC$, respectively; and let $Q$ and $S$ be the feet of the perpendiculars from $A$ onto the internal and external bisectors of $\angle ACB$, respectively. If $PQ = 7, QR = 6$ and $RS = 8$, what is the area of triangle $ABC$?
2001 AIME Problems, 15
Let $EFGH$, $EFDC$, and $EHBC$ be three adjacent square faces of a cube, for which $EC=8$, and let $A$ be the eighth vertex of the cube. Let $I$, $J$, and $K$, be the points on $\overline{EF}$, $\overline{EH}$, and $\overline{EC}$, respectively, so that $EI=EJ=EK=2$. A solid $S$ is obtained by drilling a tunnel through the cube. The sides of the tunnel are planes parallel to $\overline{AE}$, and containing the edges, $\overline{IJ}$, $\overline{JK}$, and $\overline{KI}$. The surface area of $S$, including the walls of the tunnel, is $m+n\sqrt{p}$, where $m$, $n$, and $p$ are positive integers and $p$ is not divisible by the square of any prime. Find $m+n+p$.
2013 NIMO Problems, 6
Let $f(n)=\varphi(n^3)^{-1}$, where $\varphi(n)$ denotes the number of positive integers not greater than $n$ that are relatively prime to $n$. Suppose
\[ \frac{f(1)+f(3)+f(5)+\dots}{f(2)+f(4)+f(6)+\dots} = \frac{m}{n} \]
where $m$ and $n$ are relatively prime positive integers. Compute $100m+n$.
[i]Proposed by Lewis Chen[/i]
STEMS 2021 Math Cat A, Q5
Let $ABC$ be a triangle with $I$ as incenter.The incircle touches $BC$ at $D$.Let $D'$ be the antipode of $D$ on the incircle.Make a tangent at $D'$ to incircle.Let it meet $(ABC)$ at $X,Y$ respectively.Let the other tangent from $X$ meet the other tangent from $Y$ at $Z$.Prove that $(ZBD)$ meets $IB$ at the midpoint of $IB$
2024 Brazil National Olympiad, 1
Let \( a_1 \) be an integer greater than or equal to 2. Consider the sequence such that its first term is \( a_1 \), and for \( a_n \), the \( n \)-th term of the sequence, we have
\[
a_{n+1} = \frac{a_n}{p_k^{e_k - 1}} + 1,
\]
where \( p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} \) is the prime factorization of \( a_n \), with \( 1 < p_1 < p_2 < \cdots < p_k \), and \( e_1, e_2, \dots, e_k \) positive integers.
For example, if \( a_1 = 2024 = 2^3 \cdot 11 \cdot 23 \), the next two terms of the sequence are
\[
a_2 = \frac{a_1}{23^{1-1}} + 1 = \frac{2024}{1} + 1 = 2025 = 3^4 \cdot 5^2;
\]
\[
a_3 = \frac{a_2}{5^{2-1}} + 1 = \frac{2025}{5} + 1 = 406.
\]
Determine for which values of \( a_1 \) the sequence is eventually periodic and what all the possible periods are.
[b]Note:[/b] Let \( p \) be a positive integer. A sequence \( x_1, x_2, \dots \) is eventually periodic with period \( p \) if \( p \) is the smallest positive integer such that there exists an \( N \geq 0 \) satisfying \( x_{n+p} = x_n \) for all \( n > N \).
2010 Federal Competition For Advanced Students, P2, 4
Consider the part of a lattice given by the corners $(0, 0), (n, 0), (n, 2)$ and $(0, 2)$.
From a lattice point $(a, b)$ one can move to $(a + 1, b)$ or to $(a + 1, b + 1)$ or to $(a, b - 1$), provided that the second point is also contained in the part of the lattice.
How many ways are there to move from $(0, 0)$ to $(n, 2)$ considering these rules?
2011 NZMOC Camp Selection Problems, 4
Find all pairs of positive integers $m$ and $n$ such that $$(m + 1)! + (n + 1)! = m^2n.$$
1986 AMC 12/AHSME, 30
The number of real solutions $(x,y,z,w)$ of the simultaneous equations \[2y = x + \frac{17}{x},\quad 2z = y + \frac{17}{y},\quad 2w = z + \frac{17}{z},\quad 2x = w + \frac{17}{w}\] is
$ \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 8\qquad\textbf{(E)}\ 16 $
2018 Math Prize for Girls Problems, 15
In the $xy$-coordinate plane, the $x$-axis and the line $y=x$ are mirrors. If you shoot a laser beam from the point $(126, 21)$ toward a point on the positive $x$-axis, there are $3$ places you can aim at where the beam will bounce off the mirrors and eventually return to $(126, 21)$. They are $(126, 0)$, $(105, 0)$, and a third point $(d, 0)$. What is $d$? (Recall that when light bounces off a mirror, the angle of incidence has the same measure as the angle of reflection.)
2007 iTest Tournament of Champions, 1
A fair $20$-sided die has faces numbered $1$ through $20$. The die is rolled three times and the outcomes are recorded. If $a$ and $b$ are relatively prime integers such that $a/b$ is the probability that the three recorded outcomes can be the sides of a triangle with positive area, find $a+b$.
2021 Kyiv Mathematical Festival, 2
Let $a,b,c\ge0$ and $a+b+c=3.$ Prove that $(3a-bc)(3b-ac)(3c-ab)\le8.$ (O. Rudenko)
2011 IberoAmerican, 1
Let $ABC$ be an acute-angled triangle, with $AC \neq BC$ and let $O$ be its circumcenter. Let $P$ and $Q$ be points such that $BOAP$ and $COPQ$ are parallelograms. Show that $Q$ is the orthocenter of $ABC$.
2009 Estonia Team Selection Test, 5
A strip consists of $n$ squares which are numerated in their order by integers $1,2,3,..., n$. In the beginning, one square is empty while each remaining square contains one piece. Whenever a square contains a piece and its some neighbouring square contains another piece while the square immediately following the neighbouring square is empty, one may raise the first piece over the second one to the empty square, removing the second piece from the strip.
Find all possibilites which square can be initially empty, if it is possible to reach a state where the strip contains only one piece and
a) $n = 2008$,
b) $n = 2009$.
2021 ELMO Problems, 4
The set of positive integers is partitioned into $n$ disjoint infinite arithmetic progressions $S_1, S_2, \ldots, S_n$ with common differences $d_1, d_2, \ldots, d_n$, respectively. Prove that there exists exactly one index $1\leq i \leq n$ such that\[ \frac{1}{d_i}\prod_{j=1}^n d_j \in S_i.\]
2021 Oral Moscow Geometry Olympiad, 5
The trapezoid is inscribed in a circle. Prove that the sum of distances from any point of the circle to the midpoints of the lateral sides are not less than the diagonal of the trapezoid.
2023 Indonesia TST, 1
A number is called [i]Norwegian[/i] if it has three distinct positive divisors whose sum is equal to $2022$. Determine the smallest Norwegian number.
(Note: The total number of positive divisors of a Norwegian number is allowed to be larger than $3$.)
1977 Bundeswettbewerb Mathematik, 2
On a plane are given three non-collinear points $A, B, C$. We are given a disk of diameter different from that of the circle passing through $A, B, C$ large enough to cover all three points. Construct the fourth vertex of the parallelogram $ABCD$ using only this disk (The disk is to be used as a circular ruler, for constructing a circle passing through two given points).
Kyiv City MO 1984-93 - geometry, 1984.9.2
The polygon $P$, cut out of paper, is bent in a straight line and both halves are glued. Can the perimeter of the polygon $Q$ obtained by gluing be larger than the perimeter of the polygon $P$?
2025 PErA, P2
Let $m$ be a positive integer. We say that a positive integer $x$ is $m$-good if $a^m$ divides $x$ for some integer $a > 1$. We say a positive integer $x$ is $m$-bad if it is not $m$-good.
(a) Is it true that for every positive integer $n$ there exist $n$ consecutive $m$-bad positive integers?
(b) Is it true that for every positive integer $n$ there exist $n$ consecutive $m$-good positive integers?
2018 AMC 12/AHSME, 13
How many nonnegative integers can be written in the form $$a_7\cdot3^7+a_6\cdot3^6+a_5\cdot3^5+a_4\cdot3^4+a_3\cdot3^3+a_2\cdot3^2+a_1\cdot3^1+a_0\cdot3^0,$$
where $a_i\in \{-1,0,1\}$ for $0\le i \le 7$?
$\textbf{(A) } 512 \qquad
\textbf{(B) } 729 \qquad
\textbf{(C) } 1094 \qquad
\textbf{(D) } 3281 \qquad
\textbf{(E) } 59,048 $
1999 Czech and Slovak Match, 6
Prove that for any integer $n \ge 3$, the least common multiple of the numbers $1,2, ... ,n$ is greater than $2^{n-1}$.
2009 Germany Team Selection Test, 3
Let $ S \equal{} \{x_1, x_2, \ldots, x_{k \plus{} l}\}$ be a $ (k \plus{} l)$-element set of real numbers contained in the interval $ [0, 1]$; $ k$ and $ l$ are positive integers. A $ k$-element subset $ A\subset S$ is called [i]nice[/i] if
\[ \left |\frac {1}{k}\sum_{x_i\in A} x_i \minus{} \frac {1}{l}\sum_{x_j\in S\setminus A} x_j\right |\le \frac {k \plus{} l}{2kl}\]
Prove that the number of nice subsets is at least $ \dfrac{2}{k \plus{} l}\dbinom{k \plus{} l}{k}$.
[i]Proposed by Andrey Badzyan, Russia[/i]
1979 IMO Longlists, 53
An infinite increasing sequence of positive integers $n_j (j = 1, 2, \ldots )$ has the property that for a certain $c$,
\[\frac{1}{N}\sum_{n_j\le N} n_j \le c,\]
for every $N >0$.
Prove that there exist finitely many sequences $m^{(i)}_j (i = 1, 2,\ldots, k)$ such
that
\[\{n_1, n_2, \ldots \} =\bigcup_{i=1}^k\{m^{(i)}_1 ,m^{(i)}_2 ,\ldots\}\]
and
\[m^{(i)}_{j+1} > 2m^{(i)}_j (1 \le i \le k, j = 1, 2,\ldots).\]