This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

Indonesia Regional MO OSP SMA - geometry, 2015.3

Given the isosceles triangle $ABC$, where $AB = AC$. Let $D$ be a point in the segment $BC$ so that $BD = 2DC$. Suppose also that point $P$ lies on the segment $AD$ such that: $\angle BAC = \angle BP D$. Prove that $\angle BAC = 2\angle DP C$.

2008 Sharygin Geometry Olympiad, 17

(A.Myakishev, 9--11) Given triangle $ ABC$ and a ruler with two marked intervals equal to $ AC$ and $ BC$. By this ruler only, find the incenter of the triangle formed by medial lines of triangle $ ABC$.

2000 IMC, 4

Let $(x_i)$ be a decreasing sequence of positive reals, then show that: (a) for every positive integer $n$ we have $\sqrt{\sum^n_{i=1}{x_i^2}} \leq \sum^n_{i=1}\frac{x_i}{\sqrt{i}}$. (b) there is a constant C for which we have $\sum^{\infty}_{k=1}\frac{1}{\sqrt{k}}\sqrt{\sum^{\infty}_{i=k}x_i^2} \le C\sum^{\infty}_{i=1}x_i$.

2016 IMO Shortlist, G2

Let $ABC$ be a triangle with circumcircle $\Gamma$ and incenter $I$ and let $M$ be the midpoint of $\overline{BC}$. The points $D$, $E$, $F$ are selected on sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ such that $\overline{ID} \perp \overline{BC}$, $\overline{IE}\perp \overline{AI}$, and $\overline{IF}\perp \overline{AI}$. Suppose that the circumcircle of $\triangle AEF$ intersects $\Gamma$ at a point $X$ other than $A$. Prove that lines $XD$ and $AM$ meet on $\Gamma$. [i]Proposed by Evan Chen, Taiwan[/i]

2009 Thailand Mathematical Olympiad, 5

A class contains $80$ boys and $80$ girls. On each weekday (Monday to Friday) of the week before final exams, the teacher has $16$ books for the students to borrow, where a book can only be borrowed for one day at a time, and each student can only borrow once during the entire week. Show that there are two days and two books such that one of the following two statements is true: (i) Both books were not borrowed on both days (ii) Both books were borrowed on both days, and the four students who borrowed the books on these days are either all boys or all girls.

2008 Purple Comet Problems, 16

Square ABCD has side length 7. Let $A_1$, $B_1$, $C_1$, and $D_1$ be points on rays $\overrightarrow{AB}$, $\overrightarrow{BC}$, $\overrightarrow{CD}$, and $\overrightarrow{DA}$, respectively, where each point is $3$ units from the end of the ray so that $A_1B_1C_1D_1$ forms a second square as shown. SImilarly, let $A_2$, $B_2$, $C_2$, and $D_2$ be points on segments $A_1B_1$, $B_1C_1$, $C_1D_1$, and $D_1A_1$, respectively, forming another square where $A_2$ divides segment $A_1B_1$ into two pieces whose lengths are in the same ratio as $AA_1$ is to $A_1B$. Continue this process to construct square $A_nB_nC_nD_n$ for each positive integer $n$. Find the total of all the perimeters of all the squares. [asy] size(180); pair[] A={(-1,-1),(-1,1),(1,1),(1,-1),(-1,-1)}; string[] X={"A","B","C","D"}; for(int k=0;k<10;++k) { for(int m=0;m<4;++m) { if(k==0) label("$"+X[m]+"$",A[m],A[m]); if(k==1) label("$"+X[m]+"_1$",A[m],A[m]); draw(A[m]--A[m+1]); A[m]+=3/7*(A[m+1]-A[m]); } A[4]=A[0]; }[/asy]

2011 Morocco National Olympiad, 2

Tags:
One integer was removed from the set $S=\left \{ 1,2,3,...,n \right \}$ of the integers from $1$ to $n$. The arithmetic mean of the other integers of $S$ is equal to $\frac{163}{4}$. What integer was removed ?

2006 Iran MO (3rd Round), 4

Tags: geometry
Circle $\Omega(O,R)$ and its chord $AB$ is given. Suppose $C$ is midpoint of arc $AB$. $X$ is an arbitrary point on the cirlce. Perpendicular from $B$ to $CX$ intersects circle again in $D$. Perpendicular from $C$ to $DX$ intersects circle again in $E$. We draw three lines $\ell_{1},\ell_{2},\ell_{3}$ from $A,B,E$ parralell to $OX,OD,OC$. Prove that these lines are concurrent and find locus of concurrncy point.

2017 India PRMO, 7

Find the number of positive integers $n$, such that $\sqrt{n} + \sqrt{n + 1} < 11$.

1988 Iran MO (2nd round), 1

Let $\{a_n \}_{n=1}^{\infty}$ be a sequence such that $a_1=\frac 12$ and \[a_n=\biggl( \frac{2n-3}{2n} \biggr) a_{n-1} \qquad \forall n \geq 2.\] Prove that for every positive integer $n,$ we have $\sum_{k=1}^n a_k <1.$

2016 Iran Team Selection Test, 3

Let $n$ be a positive integer. Two players $A$ and $B$ play a game in which they take turns choosing positive integers $k \le n$. The rules of the game are: (i) A player cannot choose a number that has been chosen by either player on any previous turn. (ii) A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn. (iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game. The player $A$ takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies. [i]Proposed by Finland[/i]

1985 Brazil National Olympiad, 3

A convex quadrilateral is inscribed in a circle of radius $1$. Show that the its perimeter less the sum of its two diagonals lies between $0$ and $2$.

1982 IMO, 2

A non-isosceles triangle $A_{1}A_{2}A_{3}$ has sides $a_{1}$, $a_{2}$, $a_{3}$ with the side $a_{i}$ lying opposite to the vertex $A_{i}$. Let $M_{i}$ be the midpoint of the side $a_{i}$, and let $T_{i}$ be the point where the inscribed circle of triangle $A_{1}A_{2}A_{3}$ touches the side $a_{i}$. Denote by $S_{i}$ the reflection of the point $T_{i}$ in the interior angle bisector of the angle $A_{i}$. Prove that the lines $M_{1}S_{1}$, $M_{2}S_{2}$ and $M_{3}S_{3}$ are concurrent.

2017 AMC 12/AHSME, 19

Tags:
Let $N = 123456789101112\dots4344$ be the $79$-digit number obtained that is formed by writing the integers from $1$ to $44$ in order, one after the other. What is the remainder when $N$ is divided by $45$? $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 18 \qquad\textbf{(E)}\ 44$

Geometry Mathley 2011-12, 1.3

Let $ABC$ be an acute triangle with incenter $O$, orthocenter $H$, altitude $AD. AO$ meets $BC$ at $E$. Line through $D$ parallel to $OH$ meet $AB,AC$ at $M,N$, respectively. Let $I$ be the midpoint of $AE$, and $DI$ intersect $AB,AC$ at $P,Q$ respectively. $MQ$ meets $NP$ at $T$. Prove that $D,O, T$ are collinear. Trần Quang Hùng

VMEO III 2006, 10.3

Tags: inequalities
Prove that for all non negative real numbers $a,b,c$ we have \[a^2+b^2+c^2\leq\sqrt{(b^2-bc+c^2)(c^2-ca+a^2)}+\sqrt{(c^2-ca+a^2)(a^2-ab+b^2)}+\sqrt{(a^2-ab+b^2)(b^2-bx+c^2)} \]

2015 Princeton University Math Competition, 8

Tags:
Let $\sigma_1 : \mathbb{N} \to \mathbb{N}$ be a function that takes a natural number $n$, and returns the sum of the positive integer divisors of $n$. For example, $\sigma_1(6) = 1 + 2 + 3 + 6 = 12$. What is the largest number n such that $\sigma_1(n) = 1854$?

2019 Greece Team Selection Test, 3

Let $n>1$ be a positive integer. Each cell of an $n\times n$ table contains an integer. Suppose that the following conditions are satisfied: [list=1] [*] Each number in the table is congruent to $1$ modulo $n$. [*] The sum of numbers in any row, as well as the sum of numbers in any column, is congruent to $n$ modulo $n^2$. [/list] Let $R_i$ be the product of the numbers in the $i^{\text{th}}$ row, and $C_j$ be the product of the number in the $j^{\text{th}}$ column. Prove that the sums $R_1+\hdots R_n$ and $C_1+\hdots C_n$ are congruent modulo $n^4$.

2009 Peru MO (ONEM), 2

In a quadrilateral $ABCD$, a circle is inscribed that is tangent to the sides $AB, BC, CD$ and $DA$ at points $M, N, P$ and $Q$, respectively. If $(AM) (CP) = (BN) (DQ)$, prove that $ABCD$ is an cyclic quadrilateral.

1983 Swedish Mathematical Competition, 4

$C$, $C'$ are concentric circles with radii $R$, $R'$. A rectangle has two adjacent vertices on $C$ and the other two vertices on $C'$. Find its sides if its area is as large as possible.

ICMC 7, 3

Let $N{}$ be a fixed positive integer, $S{}$ be the set $\{1, 2,\ldots , N\}$ and $\mathcal{F}$ be the set of functions $f:S\to S$ such that $f(i)\geqslant i$ for all $i\in S.$ For each $f\in\mathcal{F}$ let $P_f$ be the unique polynomial of degree less than $N{}$ satisfying $P_f(i) = f(i)$ for all $i\in S.$ If $f{}$ is chosen uniformly at random from $\mathcal{F}$ determine the expected value of $P_f'(0)$ where\[P_f'(0)=\frac{\mathrm{d}P_f(x)}{\mathrm{d}x}\bigg\vert_{x=0}.\][i]Proposed by Ishan Nath[/i]

1972 IMO Longlists, 36

Tags: geometry
A finite number of parallel segments in the plane are given with the property that for any three of the segments there is a line intersecting each of them. Prove that there exists a line that intersects all the given segments.

2002 China Team Selection Test, 1

Tags: algebra
Given that $ a_1\equal{}1$, $ a_2\equal{}5$, $ \displaystyle a_{n\plus{}1} \equal{} \frac{a_n \cdot a_{n\minus{}1}}{\sqrt{a_n^2 \plus{} a_{n\minus{}1}^2 \plus{} 1}}$. Find a expression of the general term of $ \{ a_n \}$.

2024 AIME, 13

Tags:
Let $p$ be the least prime number for which there exists a positive integer $n$ such that $n^{4}+1$ is divisible by $p^{2}$. Find the least positive integer $m$ such that $m^{4}+1$ is divisible by $p^{2}$.

2008 Princeton University Math Competition, A4/B6

$f(n)$ is the sum of all integers less than $n$ and relatively prime to $n$. Find all integers $n$ such that there exist integers $k$ and $\ell$ such that $f(n^k) = n^{\ell}$.