Found problems: 85335
2011 Bosnia And Herzegovina - Regional Olympiad, 2
If $p>2$ is prime number and $m$ and $n$ are positive integers such that $$\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}$$ Prove that $p$ divides $m$
1987 Greece National Olympiad, 4
Let $A,B$ be two points interior of circle $C(O,R)$ and $M$ a point on the circle. Let $A_1,B_1$ be the intersections of the circle with lines $MA$,$MB$ respectively. Let $G$ be the midpoint of $AB$and $G_1= C\cap MG$. Prove that$$\frac{MA}{AA_1}+ \frac{MB}{BB_1}> 2\frac{MG}{GG_1}$$
2018 Thailand TST, 3
Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both
$$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$
are integers.
2005 Greece Junior Math Olympiad, 3
Let $A$ be a given point outside a given circle. Determine points $B, C, D$ on the circle such that the quadrilateral $ABCD$ is convex and has the maximum area .
1996 Bulgaria National Olympiad, 3
A square table of size $7\times 7$ with the four corner squares deleted is given.
[list=a]
[*] What is the smallest number of squares which need to be colored black so that a $5-$square entirely uncolored Greek cross (Figure 1) cannot be found on the table?
[*] Prove that it is possible to write integers in each square in a way that the sum of the integers in each Greek cross is negative while the sum of all integers in the square table is positive.
[/list]
[asy]
size(3.5cm); usepackage("amsmath");
MP("\text{Figure }1.", (1.5, 3.5), N);
DPA(box((0,1),(3,2))^^box((1,0),(2,3)), black);
[/asy]
2019 Thailand TST, 1
There are $2^{2018}$ positions on a circle numbered from $1$ to $2^{2018}$ in a clockwise manner. Initially, two white marbles are placed at positions $2018$ and $2019$. Before the game starts, Ping chooses to place either a black marble or a white marble at each remaining position. At the start of the game, Ping is given an integer $n$ ($0\leq n\leq 2018$) and two marbles, one black and one white. He will then move around the circle, starting at position $2n$ and moving clockwise by $2n$ positions at a time. At the starting position and each position he reaches, Ping must switch the marble at that position with a marble of the other color he carries. If he cannot do so at any position, he loses the game. Is there a way to place the $2^{2018}-2$ remaining marbles so that Ping will never lose the game regardless of the number $n$ and the number of rounds he moves around the circle?
1994 Argentina National Olympiad, 6
A $9\times 9$ board has a number written on each square: all squares in the first row have $1$, all squares in the second row have $2$, $\ldots$, all squares in the ninth row have $9$.
We will call [i]special [/i] rectangle any rectangle of $2\times 3$ or $3\times 2$ or $4\times 5$ or $5\times 4$ on the board.
The permitted operations are:
$\bullet$ Simultaneously add $1$ to all the numbers located in a special rectangle.
$\bullet$ Simultaneously subtract $1$ from all numbers located in a special rectangle.
Demonstrate that it is possible to achieve, through a succession of permitted operations, that $80$ squares to have $0$ (zero). What number is left in the remaining box?
2011 China Girls Math Olympiad, 8
The $A$-excircle $(O)$ of $\triangle ABC$ touches $BC$ at $M$. The points $D,E$ lie on the sides $AB,AC$ respectively such that $DE\parallel BC$. The incircle $(O_1)$ of $\triangle ADE$ touches $DE$ at $N$. If $BO_1\cap DO=F$ and $CO_1\cap EO=G$, prove that the midpoint of $FG$ lies on $MN$.
2005 Kurschak Competition, 1
Let $N>1$ and let $a_1,a_2,\dots,a_N$ be nonnegative reals with sum at most $500$. Prove that there exist integers $k\ge 1$ and $1=n_0<n_1<\dots<n_k=N$ such that
\[\sum_{i=1}^k n_ia_{n_{i-1}}<2005.\]
2010 Today's Calculation Of Integral, 577
Prove the following inequality for any integer $ N\geq 4$.
\[ \sum_{p\equal{}4}^N \frac{p^2\plus{}2}{(p\minus{}2)^4}<5\]
2012 Indonesia TST, 1
Let $P$ be a polynomial with real coefficients. Find all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that there exists a real number $t$ such that
\[f(x+t) - f(x) = P(x)\]
for all $x \in \mathbb{R}$.
2018 PUMaC Individual Finals B, 2
Aumann, Bill, and Charlie each roll a fair $6$-sided die with sides labeled $1$ through $6$ and look at their individual rolls. Each flips a fair coin and, depending on the outcome, looks at the roll of either the player to his right or the player to his left, without anyone else knowing which die he observed. Then, at the same time, each of the three players states the expected value of the sum of the rolls based on the information he has. After hearing what everyone said, the three players again state the expected value of the sum of the rolls based on the information they have. Then, for the third time, after hearing what everyone said, the three players again state the expected value of the sum of the rolls based on the information they have. Prove that Aumann, Bill, and Charlie say the same number the third time.
2018 Yasinsky Geometry Olympiad, 6
Given a triangle $ABC$, in which $AB = BC$. Point $O$ is the center of the circumcircle, point $I$ is the center of the incircle. Point $D$ lies on the side $BC$, such that the lines $DI$ and $AB$ parallel. Prove that the lines $DO$ and $CI$ are perpendicular.
(Vyacheslav Yasinsky)
2010 Sharygin Geometry Olympiad, 18
A point $B$ lies on a chord $AC$ of circle $\omega.$ Segments $AB$ and $BC$ are diameters of circles $\omega_1$ and $\omega_2$ centered at $O_1$ and $O_2$ respectively. These circles intersect $\omega$ for the second time in points $D$ and $E$ respectively. The rays $O_1D$ and $O_2E$ meet in a point $F,$ and the rays $AD$ and $CE$ do in a point $G.$ Prove that the line $FG$ passes through the midpoint of the segment $AC.$
2004 Manhattan Mathematical Olympiad, 3
Start with a six-digit whole number $X$, and for a new whole number $Y$, by moving the first three digits of $X$ after the last three digits. (For example, if $X = \textbf{154},377$, then $Y = 377,\textbf{154}$.) Show that, when divided by $27$, both $X$ and $Y$ give the same remainder.
2022 Bundeswettbewerb Mathematik, 3
In an acute triangle $ABC$ with $AC<BC$, lines $m_a$ and $m_b$ are the perpendicular bisectors of sides $BC$ and
$AC$, respectively. Further, let $M_c$ be the midpoint of side $AB$. The Median $CM_c$ intersects $m_a$ in point $S_a$ and $m_b$ in point $S_b$; the lines $AS_b$ und $BS_a$ intersect in point $K$.
Prove: $\angle ACM_c = \angle KCB$.
2018 Online Math Open Problems, 21
Suppose that a sequence $a_0, a_1, \ldots$ of real numbers is defined by $a_0=1$ and \[a_n=\begin{cases}a_{n-1}a_0+a_{n-3}a_2+\cdots+a_0a_{n-1} & \text{if }n\text{ odd}\\a_{n-1}a_1+a_{n-3}a_3+\cdots+a_1a_{n-1} & \text{if }n\text{ even}\end{cases}\] for $n\geq1$. There is a positive real number $r$ such that \[a_0+a_1r+a_2r^2+a_3r^3+\cdots=\frac{5}{4}.\] If $r$ can be written in the form $\frac{a\sqrt{b}-c}{d}$ for positive integers $a,b,c,d$ such that $b$ is not divisible by the square of any prime and $\gcd (a,c,d)=1,$ then compute $a+b+c+d$.
[i]Proposed by Tristan Shin[/i]
1971 Dutch Mathematical Olympiad, 5
Someone draws at least three lines on paper. Each cuts the other lines two by two. No three lines pass through one point. He chooses a line and counts the intersection points on either side of the line. The numbers of intersections turn out to be the same. He chooses another line. Now the intersections number on one side appears to be six times as large as that on the other side. What is the minimum number of lines where this is possible?
[hide=original wording of second sentence]De lijnen snijden elkaar twee aan twee.[/hide]
2003 AMC 10, 13
The sum of three numbers is $ 20$. The first is $ 4$ times the sum of the other two. The second is seven times the third. What is the product of all three?
$ \textbf{(A)}\ 28 \qquad
\textbf{(B)}\ 40 \qquad
\textbf{(C)}\ 100 \qquad
\textbf{(D)}\ 400 \qquad
\textbf{(E)}\ 800$
2011 Peru IMO TST, 3
Let $a, b$ be integers, and let $P(x) = ax^3+bx.$ For any positive integer $n$ we say that the pair $(a,b)$ is $n$-good if $n | P(m)-P(k)$ implies $n | m - k$ for all integers $m, k.$ We say that $(a,b)$ is $very \ good$ if $(a,b)$ is $n$-good for infinitely many positive integers $n.$
[list][*][b](a)[/b] Find a pair $(a,b)$ which is 51-good, but not very good.
[*][b](b)[/b] Show that all 2010-good pairs are very good.[/list]
[i]Proposed by Okan Tekman, Turkey[/i]
2014 ELMO Shortlist, 5
Define a [i]beautiful number[/i] to be an integer of the form $a^n$, where $a\in\{3,4,5,6\}$ and $n$ is a positive integer.
Prove that each integer greater than $2$ can be expressed as the sum of pairwise distinct beautiful numbers.
[i]Proposed by Matthew Babbitt[/i]
Kyiv City MO Seniors 2003+ geometry, 2017.10.3
Given the square $ABCD$. Let point $M$ be the midpoint of the side $BC$, and $H$ be the foot of the perpendicular from vertex $C$ on the segment $DM$. Prove that $AB = AH$.
(Danilo Hilko)
2001 Iran MO (2nd round), 2
Let $ABC$ be an acute triangle. We draw $3$ triangles $B'AC,C'AB,A'BC$ on the sides of $\Delta ABC$ at the out sides such that:
\[ \angle{B'AC}=\angle{C'BA}=\angle{A'BC}=30^{\circ} \ \ \ , \ \ \ \angle{B'CA}=\angle{C'AB}=\angle{A'CB}=60^{\circ} \]
If $M$ is the midpoint of side $BC$, prove that $B'M$ is perpendicular to $A'C'$.
BIMO 2022, 3
Let $\omega$ be the circumcircle of an actue triangle $ABC$ and let $H$ be the feet of aliitude from $A$ to $BC$. Let $M$ and $N$ be the midpoints of the sides $AC$ and $AB$. The lines $BM$ and $CN$ intersect each other at $G$ and intersect $\omega$ at $P$ and $Q$ respectively. The circles $(HMG)$ and $(HNG)$ intersect the segments $HP$ and $HQ$ again at $R$ and $S$ respectively. Prove that $PQ\parallel RS$.
2019 Jozsef Wildt International Math Competition, W. 7
If $$\Omega_n=\sum \limits_{k=1}^n \left(\int \limits_{-\frac{1}{k}}^{\frac{1}{k}}(2x^{10} + 3x^8 + 1)\cos^{-1}(kx)dx\right)$$Then find $$\Omega=\lim \limits_{n\to \infty}\left(\Omega_n-\pi H_n\right)$$