This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2003 China Team Selection Test, 3

The $ n$ roots of a complex coefficient polynomial $ f(z) \equal{} z^n \plus{} a_1z^{n \minus{} 1} \plus{} \cdots \plus{} a_{n \minus{} 1}z \plus{} a_n$ are $ z_1, z_2, \cdots, z_n$. If $ \sum_{k \equal{} 1}^n |a_k|^2 \leq 1$, then prove that $ \sum_{k \equal{} 1}^n |z_k|^2 \leq n$.

2005 Sharygin Geometry Olympiad, 11.2

Convex quadrilateral $ABCD$ is given. Lines $BC$ and $AD$ intersect at point $O$, with $B$ lying on the segment $OC$, and $A$ on the segment $OD$. $I$ is the center of the circle inscribed in the $OAB$ triangle, $J$ is the center of the circle exscribed in the triangle $OCD$ touching the side of $CD$ and the extensions of the other two sides. The perpendicular from the midpoint of the segment $IJ$ on the lines $BC$ and $AD$ intersect the corresponding sides of the quadrilateral (not the extension) at points $X$ and $Y$. Prove that the segment $XY$ divides the perimeter of the quadrilateral$ABCD$ in half, and from all segments with this property and ends on $BC$ and $AD$, segment $XY$ has the smallest length.

2000 France Team Selection Test, 2

Tags: geometry
$A,B,C,D$ are points on a circle in that order. Prove that $|AB-CD|+|AD-BC| \ge 2|AC-BD|$.

2006 All-Russian Olympiad Regional Round, 11.4

The bisectors of angles $A$ and $C$ of triangle $ABC$ intersect its sides at points $A_1$ and $C_1$, and the circumcircle of this triangle is at points $A_0$ and $C_0$, respectively. Lines $A_1C_1$ and $A_0C_0$ intersect at point P. Prove that the segment connecting $P$ to the center of the incircle of triangle $ABC$ is parallel to $AC$.

2003 IMO Shortlist, 8

Let $p$ be a prime number and let $A$ be a set of positive integers that satisfies the following conditions: (i) the set of prime divisors of the elements in $A$ consists of $p-1$ elements; (ii) for any nonempty subset of $A$, the product of its elements is not a perfect $p$-th power. What is the largest possible number of elements in $A$ ?

2016 Ecuador Juniors, 5

In the parallelogram $ABCD$, a line through $C$ intersects the diagonal $BD$ at $E$ and $AB$ at $F$. If $F$ is the midpoint of $AB$ and the area of $\vartriangle BEC$ is $100$, find the area of the quadrilateral $AFED$.

2011 Brazil Team Selection Test, 2

Let $n\ge 3$ be an integer such that for every prime factor $q$ of $n-1$ exists an integer $a > 1$ such that $a^{n-1} \equiv 1 \,(\mod n \, )$ and $a^{\frac{n-1} {q}}\not\equiv 1 \,(\mod n \, )$. Prove that $n$ is not prime.

1986 AMC 12/AHSME, 18

Tags: conic , ellipse , geometry
A plane intersects a right circular cylinder of radius $1$ forming an ellipse. If the major axis of the ellipse of $50\%$ longer than the minor axis, the length of the major axis is $ \textbf{(A)}\ 1\qquad\textbf{(B)}\ \frac{3}{2}\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ \frac{9}{4}\qquad\textbf{(E)}\ 3$

2018 Puerto Rico Team Selection Test, 2

Let $ABC$ be an acute triangle and let $P,Q$ be points on $BC$ such that $\angle QAC =\angle ABC$ and $\angle PAB = \angle ACB$. We extend $AP$ to $M$ so that $ P$ is the midpoint of $AM$ and we extend $AQ$ to $N$ so that $Q$ is the midpoint of $AN$. If T is the intersection point of $BM$ and $CN$, show that quadrilateral $ABTC$ is cyclic.

1966 IMO Shortlist, 45

An alphabet consists of $n$ letters. What is the maximal length of a word if we know that any two consecutive letters $a,b$ of the word are different and that the word cannot be reduced to a word of the kind $abab$ with $a\neq b$ by removing letters.

MMPC Part II 1996 - 2019, 1996

[b]p1.[/b] An Egyptian fraction has the form $1/n$, where $n$ is a positive integer. In ancient Egypt, these were the only fractions allowed. Other fractions between zero and one were always expressed as a sum of distinct Egyptian fractions. For example, $3/5$ was seen as $1/2 + 1/10$, or $1/3 + 1/4 + 1/60$. The preferred method of representing a fraction in Egypt used the "greedy" algorithm, which at each stage, uses the Egyptian fraction that eats up as much as possible of what is left of the original fraction. Thus the greedy fraction for $3/5$ would be $1/2 + 1/10$. a) Find the greedy Egyptian fraction representations for $2/13$. b) Find the greedy Egyptian fraction representations for $9/10$. c) Find the greedy Egyptian fraction representations for $2/(2k+1)$, where $k$ is a positive integer. d) Find the greedy Egyptian fraction representations for $3/(6k+1)$, where $k$ is a positive integer. [b]p2.[/b] a) The smaller of two concentric circles has radius one unit. The area of the larger circle is twice the area of the smaller circle. Find the difference in their radii. [img]https://cdn.artofproblemsolving.com/attachments/8/1/7c4d81ebfbd4445dc31fa038d9dc68baddb424.png[/img] b) The smaller of two identically oriented equilateral triangles has each side one unit long. The smaller triangle is centered within the larger triangle so that the perpendicular distance between parallel sides is always the same number $d$. The area of the larger triangle is twice the area of the smaller triangle. Find $d$. [img]https://cdn.artofproblemsolving.com/attachments/8/7/1f0d56d8e9e42574053c831fa129eb40c093d9.png[/img] [b]p3.[/b] Suppose that the domain of a function $f$ is the set of real numbers and that $f$ takes values in the set of real numbers. A real number $x_0$ is a fixed point of f if $f(x_0) = x_0$. a) Let $f(x) = m x + b$. For which $m$ does $f$ have a fixed point? b) Find the fixed point of f$(x) = m x + b$ in terms of m and b, when it exists. c) Consider the functions $f_c(x) = x^2 - c$. i. For which values of $c$ are there two different fixed points? ii. For which values of $c$ are there no fixed points? iii. In terms of $c$, find the value(s) of the fixed point(s). d) Find an example of a function that has exactly three fixed points. [b]p4.[/b] A square based pyramid is made out of rubber balls. There are $100$ balls on the bottom level, 81 on the next level, etc., up to $1$ ball on the top level. a) How many balls are there in the pyramid? b) If each ball has a radius of $1$ meter, how tall is the pyramid? c) What is the volume of the solid that you create if you place a plane against each of the four sides and the base of the balls? [b]p5.[/b] We wish to consider a general deck of cards specified by a number of suits, a sequence of denominations, and a number (possibly $0$) of jokers. The deck will consist of exactly one card of each denomination from each suit, plus the jokers, which are "wild" and can be counted as any possible card of any suit. For example, a standard deck of cards consists of $4$ suits, $13$ denominations, and $0$ jokers. a) For a deck with $3$ suits $\{a, b, c\}$ and $7$ denominations $\{1, 2, 3, 4, 5, 6, 7\}$, and $0$ jokers, find the probability that a 3-card hand will be a straight. (A straight consists of $3$ cards in sequence, e.g., $1 \heartsuit$ ,$2 \spadesuit$ , $3\clubsuit$ , $2\diamondsuit$ but not $6 \heartsuit$ ,$7 \spadesuit$ , $1\diamondsuit$). b) For a deck with $3$ suits, $7$ denominations, and $0$ jokers, find the probability that a $3$-card hand will consist of $3$ cards of the same suit (i.e., a flush). c) For a deck with $3$ suits, $7$ denominations, and $1$ joker, find the probability that a $3$-card hand dealt at random will be a straight and also the probability that a $3$-card hand will be a flush. d) Find a number of suits and the length of the denomination sequence that would be required if a deck is to contain $1$ joker and is to have identical probabilities for a straight and a flush when a $3$-card hand is dealt. The answer that you find must be an answer such that a flush and a straight are possible but not certain to occur. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2024 AMC 8 -, 25

Tags: probability
A small airplane has $4$ rows of seats with $3$ seats in each row. Eight passengers have boarded the plane and are distributed randomly among the seats. A married couple is next to board. What is the probability there will be 2 adjacent seats in the same row for the couple?

2010 All-Russian Olympiad Regional Round, 10.4

We call a natural number $b$ [i]lucky [/i] if for any natural number $a$ such that $a^5$ is divisible by $b^2$, the number $a^2$ is divisible by $b$. Find the number of [i]lucky [/i] natural numbers less than $2010$.

2011 CentroAmerican, 1

Consider a cube with a fly standing at each of its vertices. When a whistle blows, each fly moves to a vertex in the same face as the previous one but diagonally opposite to it. After the whistle blows, in how many ways can the flies change position so that there is no vertex with 2 or more flies?

2020 Princeton University Math Competition, A2/B3

Cary has six distinct coins in a jar. Occasionally, he takes out three of the coins and adds a dot to each of them. Determine the number of orders in which Cary can choose the coins so that, eventually, for each number $i \in \{0, 1, . . . , 5\}$, some coin has exactly $i$ dots on it.

2017 Macedonia JBMO TST, 4

In triangle $ABC$, the points $X$ and $Y$ are chosen on the arc $BC$ of the circumscribed circle of $ABC$ that doesn't contain $A$ so that $\measuredangle BAX = \measuredangle CAY$. Let $M$ be the midpoint of the segment $AX$. Show that $$BM + CM > AY.$$

2005 JHMT, 3

Tags: geometry
Isosceles triangle $ABC$ has angle $\angle BAC = 135^o$ and $AB = 2$. What is its area?

2018 Hanoi Open Mathematics Competitions, 5

The center of a circle and nine randomly selected points on this circle are colored in red. Every pair of those points is connected by a line segment, and every point of intersection of two line segments inside the circle is colored in red. What is the largest possible number of red points? A. $235$ B. $245$ C. $250$ D. $220$ E. $265$

1989 IMO Longlists, 30

Tags: geometry
Let $ ABC$ be an equilateral triangle. Let $ D,E, F,M,N,$ and $ P$ be the mid-points of $ BC, CA, AB, FD, FB,$ and $ DC$ respectively. [b](a)[/b] Show that the line segments $ AM,EN,$ and $ FP$ are concurrent. [b](b)[/b] Let $ O$ be the point of intersection of $ AM,EN,$ and $ FP.$ Find $ OM : OF : ON : OE : OP : OA.$

2024 AMC 10, 7

What is the remainder when $7^{2024}+7^{2025}+7^{2026}$ is divided by $19$? $ \textbf{(A) }0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }7 \qquad \textbf{(D) }11 \qquad \textbf{(E) }18 \qquad $

2005 Swedish Mathematical Competition, 5

Every cell of a $2005 \times 2005$ square board is colored white or black so that every $2 \times 2$ subsquare contains an odd number of black cells. Show that among the corner cells there is an even number of black ones. How many ways are there to color the board in this manner?

2007 F = Ma, 26

A sled loaded with children starts from rest and slides down a snowy $25^\circ$ (with respect to the horizontal) incline traveling $85$ meters in $17$ seconds. Ignore air resistance. What is the coefficient of kinetic friction between the sled and the slope? $ \textbf {(A) } 0.36 \qquad \textbf {(B) } 0.40 \qquad \textbf {(C) } 0.43 \qquad \textbf {(D) } 1.00 \qquad \textbf {(E) } 2.01 $

2012 Tournament of Towns, 4

Let $C(n)$ be the number of prime divisors of a positive integer $n$. (a) Consider set $S$ of all pairs of positive integers $(a, b)$ such that $a \ne b$ and $C(a + b) = C(a) + C(b)$. Is $S$ finite or infinite? (b) Define $S'$ as a subset of S consisting of the pairs $(a, b)$ such that $C(a+b) > 1000$. Is $S'$ finite or infinite?

1998 Singapore Senior Math Olympiad, 2

Let $C$ be a circle in the plane. Let $C_1$ and $C_2$ be two non-intersecting circles touching $C$ internally at points $A$ and $B$ respectively (Fig. ). Suppose that $D$ and $E$ are two points on $C_1$ and $C_2$ respectively such that $DE$ is a common tangent of $C_1$ and $C_2$, and both $C_1$ and C2 are on the same side of $DE$. Let $F$ be the intersection point of $AD$ and $BE$. Prove that $F$ lies on $C$. [img]https://cdn.artofproblemsolving.com/attachments/f/c/5c733db462ef8ec3d3f82bbb762f7f087fbd3d.png[/img]

2018 Rio de Janeiro Mathematical Olympiad, 3

Let $n$ and $k$ be positive integers. A function $f : \{1, 2, 3, 4, \dots , kn - 1, kn\} \to \{1, \cdots , 5\}$ is [i]good[/i] if $f(j + k) - f(j)$ is multiple of $k$ for every $j = 1, 2. \cdots , kn - k$. [b](a)[/b] Prove that, if $k = 2$, then the number of good functions is a perfect square for every positive integer $n$. [b](b)[/b] Prove that, if $k = 3$, then the number of good functions is a perfect cube for every positive integer $n$.