This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 MMATHS, Mixer Round

[b]p1.[/b] Give a fake proof that $0 = 1$ on the back of this page. The most convincing answer to this question at this test site will receive a point. [b]p2.[/b] It is often said that once you assume something false, anything can be derived from it. You may assume for this question that $0 = 1$, but you can only use other statements if they are generally accepted as true or if your prove them from this assumption and other generally acceptable mathematical statements. With this in mind, on the back of this page prove that every number is the same number. [b]p3.[/b] Suppose you write out all integers between $1$ and $1000$ inclusive. (The list would look something like $1$, $2$, $3$, $...$ , $10$, $11$, $...$ , $999$, $1000$.) Which digit occurs least frequently? [b]p4.[/b] Pick a real number between $0$ and $1$ inclusive. If your response is $r$ and the standard deviation of all responses at this site to this question is $\sigma$, you will receive $r(1 - (r - \sigma)^2)$ points. [b]p5.[/b] Find the sum of all possible values of $x$ that satisfy $243^{x+1} = 81^{x^2+2x}$. [b]p6.[/b] How many times during the day are the hour and minute hands of a clock aligned? [b]p7.[/b] A group of $N + 1$ students are at a math competition. All of them are wearing a single hat on their head. $N$ of the hats are red; one is blue. Anyone wearing a red hat can steal the blue hat, but in the process that person’s red hat disappears. In fact, someone can only steal the blue hat if they are wearing a red hat. After stealing it, they would wear the blue hat. Everyone prefers the blue hat over a red hat, but they would rather have a red hat than no hat at all. Assuming that everyone is perfectly rational, find the largest prime $N$ such that nobody will ever steal the blue hat. [b]p8.[/b] On the back of this page, prove there is no function f$(x)$ for which there exists a (finite degree) polynomial $p(x)$ such that $f(x) = p(x)(x + 3) + 8$ and $f(3x) = 2f(x)$. [b]p9.[/b] Given a cyclic quadrilateral $YALE$ with $Y A = 2$, $AL = 10$, $LE = 11$, $EY = 5$, what is the area of $YALE$? [b]p10.[/b] About how many pencils are made in the U.S. every year? If your answer to this question is $p$, and our (good) estimate is $\rho$, then you will receive $\max(0, 1 -\frac 12 | \log_{10}(p) - \log_{10}(\rho)|)$ points. [b]p11.[/b] The largest prime factor of $520, 302, 325$ has $5$ digits. What is this prime factor? [b]p12.[/b] The previous question was on the individual round from last year. It was one of the least frequently correctly answered questions. The first step to solving the problem and spotting the pattern is to divide $520, 302, 325$ by an appropriate integer. Unfortunately, when solving the problem many people divide it by $n$ instead, and then they fail to see the pattern. What is $n$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1988 All Soviet Union Mathematical Olympiad, 468

The numbers $1$ and $2$ are written on an empty blackboard. Whenever the numbers $m$ and $n$ appear on the blackboard the number $m + n + mn$ may be written. Can we obtain : (1) $13121$, (2) $12131$?

2008 IberoAmerican Olympiad For University Students, 3

Tags: inequalities
Prove that $x+\frac{1}{x^x}<2$ for $0<x<1$.

1988 Tournament Of Towns, (188) 1

One of the numbers $1$ or $-1$ is assigned to each vertex of a cube. To each face of the cube is assigned the integer which is the product of the four integers at the vertices of the face. Is it possible that the sum of the $14$ assigned integers is $0$? (G. Galperin)

2016 Junior Balkan Team Selection Tests - Romania, 3

Tags: inequalities
Let a,b,c be real numbers such that:$a\ge b\ge 1\ge c\ge 0$ and a+b+c=3. a)Prove that $2\le ab +bc+ca\le 3$ b)Prove that $\dfrac{24}{a^3+b^3+c^3}+\dfrac{25}{ab+bc+ca}\ge 14$. Find the equality cases

1998 German National Olympiad, 5

A sequence ($a_n$) is given by $a_0 = 0, a_1 = 1$ and $a_{k+2} = a_{k+1} +a_k$ for all integers $k \ge 0$. Prove that the inequality $\sum_{k=0}^n \frac{a_k}{2^k}< 2$ holds for all positive integers $n$.

2014 China Team Selection Test, 4

For any real numbers sequence $\{x_n\}$ ,suppose that $\{y_n\}$ is a sequence such that: $y_1=x_1, y_{n+1}=x_{n+1}-(\sum\limits_{i = 1}^{n} {x^2_i})^{ \frac{1}{2}}$ ${(n \ge 1})$ . Find the smallest positive number $\lambda$ such that for any real numbers sequence $\{x_n\}$ and all positive integers $m$ , have $\frac{1}{m}\sum\limits_{i = 1}^{m} {x^2_i}\le\sum\limits_{i = 1}^{m} {\lambda^{m-i}y^2_i} .$ (High School Affiliated to Nanjing Normal University )

2021 Bangladeshi National Mathematical Olympiad, 9

Cynthia loves Pokemon and she wants to catch them all. In Victory Road, there are a total of $80$ Pokemon. Cynthia wants to catch as many of them as possible. However, she cannot catch any two Pokemon that are enemies with each other. After exploring around for a while, she makes the following two observations: 1. Every Pokemon in Victory Road is enemies with exactly two other Pokemon. 2. Due to her inability to catch Pokemon that are enemies with one another, the maximum number of the Pokemon she can catch is equal to $n$. What is the sum of all possible values of $n$?

Kvant 2021, M2655

A teacher and her 30 students play a game on an infinite cell grid. The teacher starts first, then each of the 30 students makes a move, then the teacher and so on. On one move the person can color one unit segment on the grid. A segment cannot be colored twice. The teacher wins if, after the move of one of the 31 players, there is a $1\times 2$ or $2\times 1$ rectangle , such that each segment from it's border is colored, but the segment between the two adjacent squares isn't colored. Prove that the teacher can win.

2008 Postal Coaching, 3

Let $ABC$ be a triangle. For any point $X$ on $BC$, let $AX$ meet the circumcircle of $ABC$ in $X'$. Prove or disprove: $XX'$ has maximum length if and only if $AX$ lies between the median and the internal angle bisector from $A$.

2001 Slovenia National Olympiad, Problem 4

Tags: game
Andrej and Barbara play the following game with two strips of newspaper of length $a$ and $b$. They alternately cut from any end of any of the strips a piece of length $d$. The player who cannot cut such a piece loses the game. Andrej allows Barbara to start the game. Find out how the lengths of the strips determine the winner.

2005 Denmark MO - Mohr Contest, 1

This figure is cut out from a sheet of paper. Folding the sides upwards along the dashed lines, one gets a (non-equilateral) pyramid with a square base. Calculate the area of the base. [img]https://1.bp.blogspot.com/-lPpfHqfMMRY/XzcBIiF-n2I/AAAAAAAAMW8/nPs_mLe5C8srcxNz45Wg-_SqHlRAsAmigCLcBGAsYHQ/s0/2005%2BMohr%2Bp1.png[/img]

2021 MOAA, 5

Tags: team
Two right triangles are placed next to each other to form a quadrilateral as shown. What is the perimeter of the quadrilateral? [asy] size(4cm); fill((-5,0)--(0,12)--(0,6)--(8,0)--cycle, gray+opacity(0.3)); draw((0,0)--(0,12)--(-5,0)--cycle); draw((0,0)--(8,0)--(0,6)); label("5", (-2.5,0), S); label("13", (-2.5,6), dir(140)); label("6", (0,3), E); label("8", (4,0), S); [/asy] [i]Proposed by Nathan Xiong[/i]

1999 IMO Shortlist, 6

Two circles $\Omega_{1}$ and $\Omega_{2}$ touch internally the circle $\Omega$ in M and N and the center of $\Omega_{2}$ is on $\Omega_{1}$. The common chord of the circles $\Omega_{1}$ and $\Omega_{2}$ intersects $\Omega$ in $A$ and $B$. $MA$ and $MB$ intersects $\Omega_{1}$ in $C$ and $D$. Prove that $\Omega_{2}$ is tangent to $CD$.

2016 PUMaC Algebra Individual B, B5

Tags:
For positive real numbers $x$ and $y$, let $f(x, y) = x^{\log_2y}$. The sum of the solutions to the equation \[4096f(f(x, x), x) = x^{13}\] can be written in simplest form as $\tfrac{m}{n}$. Compute $m + n$.

2021 Cono Sur Olympiad, 2

Let $ABC$ be a triangle and $I$ its incenter. The lines $BI$ and $CI$ intersect the circumcircle of $ABC$ again at $M$ and $N$, respectively. Let $C_1$ and $C_2$ be the circumferences of diameters $NI$ and $MI$, respectively. The circle $C_1$ intersects $AB$ at $P$ and $Q$, and the circle $C_2$ intersects $AC$ at $R$ and $S$. Show that $P$, $Q$, $R$ and $S$ are concyclic.

2009 BAMO, 5

Tags: inequalities
Let $\triangle ABC$ be an acute triangle with angles $\alpha, \beta,$ and $\gamma$. Prove that $$\frac{\cos(\beta-\gamma)}{cos\alpha}+\frac{\cos(\gamma-\alpha)}{\cos \beta}+\frac{\cos(\alpha-\beta)}{\cos \gamma} \geq \frac{3}{2}$$

Russian TST 2019, P2

Two ants are moving along the edges of a convex polyhedron. The route of every ant ends in its starting point, so that one ant does not pass through the same point twice along its way. On every face $F$ of the polyhedron are written the number of edges of $F$ belonging to the route of the first ant and the number of edges of $F$ belonging to the route of the second ant. Is there a polyhedron and a pair of routes described as above, such that only one face contains a pair of distinct numbers? [i]Proposed by Nikolai Beluhov[/i]

2010 CHMMC Fall, 8

Rachel writes down a simple inequality: one $2$-digit number is greater than another. Matt is sitting across from Rachel and peeking at her paper. If Matt, reading upside down, sees a valid inequality between two $2$-digit numbers, compute the number of different inequalities that Rachel could have written. Assume that each digit is either a $1, 6, 8$, or $9$.

2015 Saudi Arabia GMO TST, 4

Let $p, q$ be two different odd prime numbers and $n$ an integer such that $pq$ divides $n^{pq} + 1$. Prove that if $p^3q^3$ divides $n^{pq} + 1$ then either $p^2$ divides $n + 1$ or $q^2$ divides $n + 1$. Malik Talbi

2019 AIME Problems, 13

Tags: geometry
Regular octagon $A_1A_2A_3A_4A_5A_6A_7A_8$ is inscribed in a circle of area $1$. Point $P$ lies inside the circle so that the region bounded by $\overline{PA_1}$, $\overline{PA_2}$, and the minor arc $\widehat{A_1A_2}$ of the circle has area $\tfrac17$, while the region bounded by $\overline{PA_3}$, $\overline{PA_4}$, and the minor arc $\widehat{A_3A_4}$ of the circle has area $\tfrac 19$. There is a positive integer $n$ such that the area of the region bounded by $\overline{PA_6}$, $\overline{PA_7}$, and the minor arc $\widehat{A_6A_7}$ is equal to $\tfrac18 - \tfrac{\sqrt 2}n$. Find $n$.

2014 Taiwan TST Round 1, 4

Tags: geometry
Let $ABC$ be an acute triangle and let $D$ be the foot of the $A$-bisector. Moreover, let $M$ be the midpoint of $AD$. The circle $\omega_1$ with diameter $AC$ meets $BM$ at $E$, while the circle $\omega_2$ with diameter $AB$ meets $CM$ at $F$. Assume that $E$ and $F$ lie inside $ABC$. Prove that $B$, $E$, $F$, $C$ are concyclic.

1995 AMC 8, 1

Tags: percent
Walter has exactly one penny, one nickel, one dime and one quarter in his pocket. What percent of one dollar is in his pocket? $\text{(A)}\ 4\% \qquad \text{(B)}\ 25\% \qquad \text{(C)}\ 40\% \qquad \text{(D)}\ 41\% \qquad \text{(E)}\ 59\%$

1982 IMO Longlists, 29

Tags: limit , algebra , function
Let $f : \mathbb R \to \mathbb R$ be a continuous function. Suppose that the restriction of $f$ to the set of irrational numbers is injective. What can we say about $f$? Answer the analogous question if $f$ is restricted to rationals.

2010 Sharygin Geometry Olympiad, 6

The incircle of triangle $ABC$ touches its sides in points $A', B',C'$ . It is known that the orthocenters of triangles $ABC$ and $A' B'C'$ coincide. Is triangle $ABC$ regular?