This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

MBMT Team Rounds, 2015 F3 E1

Tags:
Compute $1 - 2 + 3 - 4 + \dots + 2013 - 2014 + 2015$.

2020 USMCA, 12

Tags:
Let $a, b, c, d$ be the roots of the quartic polynomial $f(x) = x^4 + 2x + 4$. Find the value of $$\frac{a^2}{a^3 + 2} + \frac{b^2}{b^3 + 2} + \frac{c^2}{c^3 + 2} + \frac{d^2}{d^3 + 2}.$$

2019 Korea Winter Program Practice Test, 4

A rabbit is placed on a $2n\times 2n$ chessboard. Every time the rabbit moves to one of the adjacent squares. (Adjacent means sharing an edge). It is known that the rabbit went through every square and came back to the place where the rabbit started, and the path of the rabbit form a polygon $\mathcal{P}$. Find the maximum possible number of the vertices of $\mathcal{P}$. For example the answer for the case $n=2$ would be $12$. [asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(2cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -11.3, xmax = 27.16, ymin = -11.99, ymax = 10.79; /* image dimensions */ /* draw figures */ draw((5.14,3.19)--(8.43,3.22), linewidth(1)); draw((8.43,3.22)--(11.72,3.25), linewidth(1)); draw((11.72,3.25)--(11.75,-0.04), linewidth(1)); draw((11.75,-0.04)--(11.78,-3.33), linewidth(1)); draw((11.78,-3.33)--(8.49,-3.36), linewidth(1)); draw((8.49,-3.36)--(5.2,-3.39), linewidth(1)); draw((5.2,-3.39)--(5.17,-0.1), linewidth(1)); draw((5.17,-0.1)--(5.14,3.19), linewidth(1)); draw((6.785,3.205)--(6.845,-3.375), linewidth(1)); draw((8.43,3.22)--(8.49,-3.36), linewidth(1)); draw((10.075,3.235)--(10.135,-3.345), linewidth(1)); draw((5.155,1.545)--(11.735,1.605), linewidth(1)); draw((5.17,-0.1)--(11.75,-0.04), linewidth(1)); draw((11.765,-1.685)--(5.185,-1.745), linewidth(1)); draw((5.97,2.375)--(10.905,2.42), linewidth(1)); draw((10.905,2.42)--(10.92,0.775), linewidth(1)); draw((10.92,0.775)--(9.275,0.76), linewidth(1)); draw((9.275,0.76)--(9.29,-0.885), linewidth(1)); draw((9.29,-0.885)--(10.935,-0.87), linewidth(1)); draw((10.935,-0.87)--(10.95,-2.515), linewidth(1)); draw((10.95,-2.515)--(6.015,-2.56), linewidth(1)); draw((6.015,-2.56)--(6,-0.915), linewidth(1)); draw((6,-0.915)--(7.645,-0.9), linewidth(1)); draw((7.645,-0.9)--(7.63,0.745), linewidth(1)); draw((7.63,0.745)--(5.985,0.73), linewidth(1)); draw((5.985,0.73)--(5.97,2.375), linewidth(1)); /* dots and labels */ dot((5.97,2.375),linewidth(4pt) + dotstyle); dot((5.985,0.73),linewidth(4pt) + dotstyle); dot((6,-0.915),linewidth(4pt) + dotstyle); dot((6.015,-2.56),linewidth(4pt) + dotstyle); dot((7.645,-0.9),linewidth(4pt) + dotstyle); dot((7.63,0.745),linewidth(4pt) + dotstyle); dot((9.275,0.76),linewidth(4pt) + dotstyle); dot((9.29,-0.885),linewidth(4pt) + dotstyle); dot((10.95,-2.515),linewidth(4pt) + dotstyle); dot((10.935,-0.87),linewidth(4pt) + dotstyle); dot((10.92,0.775),linewidth(4pt) + dotstyle); dot((10.905,2.42),linewidth(4pt) + dotstyle); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy]

EMCC Guts Rounds, 2010

[u]Round 4[/u] [b]p13.[/b] What is the units digit of the number $(2^1 + 1)(2^2 - 1)(2^3 + 1)(2^4 - 1)...(2^{2010} - 1)$? [b]p14.[/b] Mr. Fat noted that on January $2$, $2010$, the display of the day is $01/02/2010$, and the sequence $01022010$ is a palindrome (a number that reads the same forwards and backwards). How many days does Mr. Fat need to wait between this palindrome day and the last palindrome day of this decade? [b]p15.[/b] Farmer Tim has a $30$-meter by $30$-meter by $30\sqrt2$-meter triangular barn. He ties his goat to the corner where the two shorter sides meet with a 60-meter rope. What is the area, in square meters, of the land where the goat can graze, given that it cannot get inside the barn? [b]p16.[/b] In triangle $ABC$, $AB = 3$, $BC = 4$, and $CA = 5$. Point $P$ lies inside the triangle and the distances from $P$ to two of the sides of the triangle are $ 1$ and $2$. What is the maximum distance from $P$ to the third side of the triangle? [u]Round 5[/u] [b]p17.[/b] Let $Z$ be the answer to the third question on this guts quadruplet. If $x^2 - 2x = Z - 1$, find the positive value of $x$. [b]p18.[/b] Let $X$ be the answer to the first question on this guts quadruplet. To make a FATRON2012, a cubical steel body as large as possible is cut out from a solid sphere of diameter $X$. A TAFTRON2013 is created by cutting a FATRON2012 into $27$ identical cubes, with no material wasted. What is the length of one edge of a TAFTRON2013? [b]p19.[/b] Let $Y$ be the smallest integer greater than the answer to the second question on this guts quadruplet. Fred posts two distinguishable sheets on the wall. Then, $Y$ people walk into the room. Each of the Y people signs up on $0, 1$, or $2$ of the sheets. Given that there are at least two people in the room other than Fred, how many possible pairs of lists can Fred have? [b]p20.[/b] Let $A, B, C$, be the respective answers to the first, second, and third questions on this guts quadruplet. At the Robot Design Convention and Showcase, a series of robots are programmed such that each robot shakes hands exactly once with every other robot of the same height. If the heights of the $16$ robots are $4$, $4$, $4$, $5$, $5$, $7$, $17$, $17$, $17$, $34$, $34$, $42$, $100$, $A$, $B$, and $C$ feet, how many handshakes will take place? [u]Round 6[/u] [b]p21.[/b] Determine the number of ordered triples $(p, q, r)$ of primes with $1 < p < q < r < 100$ such that $q - p = r - q$. [b]p22.[/b] For numbers $a, b, c, d$ such that $0 \le a, b, c, d \le 10$, find the minimum value of $ab + bc + cd + da - 5a - 5b - 5c - 5d$. [b]p23.[/b] Daniel has a task to measure $1$ gram, $2$ grams, $3$ grams, $4$ grams , ... , all the way up to $n$ grams. He goes into a store and buys a scale and six weights of his choosing (so that he knows the value for each weight that he buys). If he can place the weights on either side of the scale, what is the maximum value of $n$? [b]p24.[/b] Given a Rubik’s cube, what is the probability that at least one face will remain unchanged after a random sequence of three moves? (A Rubik’s cube is a $3$ by $3$ by $3$ cube with each face starting as a different color. The faces ($3$ by $3$) can be freely turned. A move is defined in this problem as a $90$ degree rotation of one face either clockwise or counter-clockwise. The center square on each face–six in total–is fixed.) PS. You should use hide for answers. First rounds have been posted [url=https://artofproblemsolving.com/community/c4h2766534p24230616]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 Indonesia TST, 4

Given a non-zero integer $y$ and a positive integer $n$. If $x_1, x_2, \ldots, x_n \in \mathbb{Z} - \{0, 1\}$ and $z \in \mathbb{Z}^+$ satisfy $(x_1x_2 \ldots x_n)^2y \le 2^{2(n+1)}$ and $x_1x_2 \ldots x_ny = z + 1$, prove that there is a prime among $x_1, x_2, \ldots, x_n, z$. [color=blue]It appears that the problem statement is incorrect; suppose $y = 5, n = 2$, then $x_1 = x_2 = -1$ and $z = 4$. They all satisfy the problem's conditions, but none of $x_1, x_2, z$ is a prime. What should the problem be, or did I misinterpret the problem badly?[/color]

2013 Ukraine Team Selection Test, 8

Let $ABC$ be a triangle with $AB \neq AC$ and circumcenter $O$. The bisector of $\angle BAC$ intersects $BC$ at $D$. Let $E$ be the reflection of $D$ with respect to the midpoint of $BC$. The lines through $D$ and $E$ perpendicular to $BC$ intersect the lines $AO$ and $AD$ at $X$ and $Y$ respectively. Prove that the quadrilateral $BXCY$ is cyclic.

2014 BMT Spring, 5

Determine $$\lim_{x\to\infty}\frac{\sqrt{x+2014}}{\sqrt x+\sqrt{x+2014}}$$

2018 MIG, 24

Tags:
The sides of $\triangle ABC$ form an arithmetic sequence of integers. Incircle $I$ is tangent to $AB$, $BC$, and $CA$ at $D$, $E$, and $F$, respectively. Given that $DB = \tfrac32$, $FA = \tfrac12$, find the radius of $I$. $\textbf{(A) } \dfrac12\qquad\textbf{(B) } \dfrac{\sqrt{15}}7\qquad\textbf{(C) } \dfrac{\sqrt{15}}6\qquad\textbf{(D) } \dfrac{2\sqrt{15}}{9}\qquad\textbf{(E) } \dfrac{\sqrt{15}}{4}$

1992 IMO Shortlist, 8

Show that in the plane there exists a convex polygon of 1992 sides satisfying the following conditions: [i](i)[/i] its side lengths are $ 1, 2, 3, \ldots, 1992$ in some order; [i](ii)[/i] the polygon is circumscribable about a circle. [i]Alternative formulation:[/i] Does there exist a 1992-gon with side lengths $ 1, 2, 3, \ldots, 1992$ circumscribed about a circle? Answer the same question for a 1990-gon.

2005 Grigore Moisil Urziceni, 3

Define the operation $ (a,b)\circ (c,d) =(ac,ad+b). $ [b]a)[/b] Prove that $ \left( \mathbb{Q}\setminus\{ 0\}\times\mathbb{Q} ,\circ \right) $ is a group. [b]b)[/b] Let $ H $ be an infinite subgroup of $ \left( \mathbb{Q}\setminus\{ 0\}\times\mathbb{Q} ,\circ \right) $ that is cyclic and doesn't contain any element of the form $ (1,q) , $ where $ q $ is a nonzero rational. Show that there exist two rational numbers $ a,b $ such that $$ H=\left\{ \left.\left( a^n, b\cdot\frac{1-a^n}{1-a} \right)\right| n\in\mathbb{Z} \right\} $$

1998 Belarus Team Selection Test, 2

The numbers $1,2,...,n$ ($n \ge 5$) are written on the circle in the clockwise order. Per move it is allowed to exchange any couple of consecutive numbers $a, b$ to the couple $\frac{a+b}{2}, \frac{a+b}{2}$. Is it possible to make all numbers equal using these operations?

1981 Putnam, A6

Suppose that each of the vertices of $ABC$ is a lattice point in the $xy$-plane and that there is exactly one lattice point $P$ in the interior of the triangle. The line $AP$ is extended to meet $BC$ at $E$. Determine the largest possible value for the ratio of lengths of segments $$\frac{|AP|}{|PE|}.$$

1967 AMC 12/AHSME, 24

Tags:
The number of solution-pairs in the positive integers of the equation $3x+5y=501$ is: $\textbf{(A)}\ 33\qquad \textbf{(B)}\ 34\qquad \textbf{(C)}\ 35\qquad \textbf{(D)}\ 100\qquad \textbf{(E)}\ \text{none of these}$

2025 Harvard-MIT Mathematics Tournament, 15

Tags: guts
Right triangle $\triangle{DEF}$ with $\angle{D}=90^\circ$ and $\angle{F}=30^\circ$ is inscribed in equilateral triangle $\triangle{ABC}$ such that $D, E,$ and $F$ lie on segments $\overline{BC}, \overline{CA},$ and $\overline{AB},$ respectively. Given that $BD=7$ and $DC=4,$ compute $DE.$

1975 Chisinau City MO, 89

Tags: circles , cyclic , geometry
A closed line on a plane is such that any quadrangle inscribed in it has the sum of opposite angles equal to $180^o$. Prove that this line is a circle.

2014 Stars Of Mathematics, 2

Determine all integers $n\geq 1$ for which the numbers $1,2,\ldots,n$ may be (re)ordered as $a_1,a_2,\ldots,a_n$ in such a way that the average $\dfrac {a_1+a_2+\cdots + a_k} {k}$ is an integer for all values $1\leq k\leq n$. (Dan Schwarz)

2007 Sharygin Geometry Olympiad, 4

Determine the locus of orthocenters of triangles, given the midpoint of a side and the feet of the altitudes drawn on two other sides.

2012 ITAMO, 1

On the sides of a triangle $ABC$ right angled at $A$ three points $D, E$ and $F$ (respectively $BC, AC$ and $AB$) are chosen so that the quadrilateral $AFDE$ is a square. If $x$ is the length of the side of the square, show that \[\frac{1}{x}=\frac{1}{AB}+\frac{1}{AC}\]

1940 Putnam, B4

Prove that the locus of the point of intersection of three mutually perpendicular planes tangent to the surface $$ax^2 + by^2 +cz^2 =1\;\;\; (\text{where}\;\;abc \ne 0)$$ is the sphere $$x^2 +y^2 +z^2 =\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.$$

2025 Romanian Master of Mathematics, 2

Consider an infinite sequence of positive integers $a_1, a_2, a_3, \dots$ such that $a_1 > 1$ and $(2^{a_n} - 1)a_{n+1}$ is a square for all positive integers $n$. Is it possible for two terms of such a sequence to be equal? [i]Proposed by Pavel Kozlov, Russia[/i]

2010 National Chemistry Olympiad, 15

Tags:
A gas diffuses one-third as fast as $\ce{O2}$ at $100^{\circ}\text{C}$. This gas could be: $ \textbf{(A)}\hspace{.05in}\text{He (M=4)}\qquad\textbf{(B)}\hspace{.05in}\ce{C2H5F}(\text{M=48})$ $\qquad\textbf{(C)}\hspace{.05in}\ce{C7H12}\text{(M=96)}\qquad\textbf{(D)}\hspace{.05in}\ce{C5F12}\text{(M=288)}\qquad$

2010 Gheorghe Vranceanu, 2

Let be a natural number $ n, $ a nonzero number $ \alpha, \quad n $ numbers $ a_1,a_2,\ldots ,a_n $ and $ n+1 $ functions $ f_0,f_1,f_2,\ldots ,f_n $ such that $ f_0=\alpha $ and the rest are defined recursively as $$ f_k (x)=a_k+\int_0^x f_{k-1} (x)dx . $$ Prove that if all these functions are everywhere nonnegative, then the sum of all these functions is everywhere nonnegative.

2017 Philippine MO, 1

Given \(n \in \mathbb{N}\), let \(\sigma (n)\) denote the sum of the divisors of \(n\) and \(\phi (n)\) denote the number of integers \(n \geq m\) for which \(\gcd(m,n) = 1\). Show that for all \(n \in \mathbb{N}\), \[\large \frac{1}{\sigma (n)} + \frac{1}{\phi (n)} \geq \frac{2}{n}\] and determine when equality holds.

2003 Singapore Senior Math Olympiad, 1

It is given that n is a positive integer such that both numbers $2n + 1$ and $3n + 1$ are complete squares. Is it true that $n$ must be divisible by $40$ ? Justify your answer.

2005 Sharygin Geometry Olympiad, 13

A triangle $ABC$ and two lines $\ell_1, \ell_2$ are given. Through an arbitrary point $D$ on the side $AB$, a line parallel to $\ell_1$ intersects the $AC$ at point $E$ and a line parallel to $\ell_2$ intersects the $BC$ at point $F$. Construct a point $D$ for which the segment $EF$ has the smallest length.