This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 AIME Problems, 15

Tags: circles
Circles $\omega_1$ and $\omega_2$ intersect at points $X$ and $Y$. Line $\ell$ is tangent to $\omega_1$ and $\omega_2$ at $A$ and $B$, respectively, with line $AB$ closer to point $X$ than to $Y$. Circle $\omega$ passes through $A$ and $B$ intersecting $\omega_1$ again at $D \neq A$ and intersecting $\omega_2$ again at $C \neq B$. The three points $C$, $Y$, $D$ are collinear, $XC = 67$, $XY = 47$, and $XD = 37$. Find $AB^2$.

2025 Euler Olympiad, Round 2, 5

We are given an infinite row of cells extending infinitely in both directions. Some cells contain one or more stones. The total number of stones is finite. At each move, the player performs one of the following three operations: [b]1. [/b]Take three stones from some cell, and add one stone to the cells located one cell to the left and one cell to the right, each skipping one cell in between. [b]2. [/b]Take two stones from some cell, and add one stone to the cell one cell to the left, skipping one cell and one stone to the adjacent cell to the right. [b]3.[/b] Take one stone from each of two adjacent cells, and add one stone to the cell to the right of these two cells. The process ends when no moves are possible. Prove that the process always terminates and the final distribution of stones does not depend on the choices of moves made by the player. [img]https://i.imgur.com/IjcIDOa.png[/img] [i]Proposed by Luka Tsulaia, Georgia[/i]

2008 Germany Team Selection Test, 3

A rectangle $ D$ is partitioned in several ($ \ge2$) rectangles with sides parallel to those of $ D$. Given that any line parallel to one of the sides of $ D$, and having common points with the interior of $ D$, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with $ D$'s boundary. [i]Author: Kei Irie, Japan[/i]

2011 Denmark MO - Mohr Contest, 5

Determine all sets $(a, b, c)$ of positive integers where one obtains $b^2$ by removing the last digit in $c^2$ and one obtains $a^2$ by removing the last digit in $b^2$. .

2011 Belarus Team Selection Test, 1

Let $g(n)$ be the number of all $n$-digit natural numbers each consisting only of digits $0,1,2,3$ (but not nessesarily all of them) such that the sum of no two neighbouring digits equals $2$. Determine whether $g(2010)$ and $g(2011)$ are divisible by $11$. I.Kozlov

2006 Estonia Math Open Junior Contests, 10

Tags: inequalities
Let a, b, c be positive integers. Prove that the inequality \[ (x\minus{}y)^a(x\minus{}z)^b(y\minus{}z)^c \ge 0 \] holds for all reals x, y, z if and only if a, b, c are even.

2011 Graduate School Of Mathematical Sciences, The Master Cource, The University Of Tokyo, 2

Let $f(x,\ y)=\frac{x+y}{(x^2+1)(y^2+1)}.$ (1) Find the maximum value of $f(x,\ y)$ for $0\leq x\leq 1,\ 0\leq y\leq 1.$ (2) Find the maximum value of $f(x,\ y),\ \forall{x,\ y}\in{\mathbb{R}}.$

2003 Silk Road, 2

Let $s=\frac{AB+BC+AC}{2}$ be half-perimeter of triangle $ABC$. Let $L$ and $N$be a point's on ray's $AB$ and $CB$, for which $AL=CN=s$. Let $K$ is point, symmetric of point $B$ by circumcenter of $ABC$. Prove, that perpendicular from $K$ to $NL$ passes through incenter of $ABC$. Solution for problem [url=http://www.artofproblemsolving.com/Forum/viewtopic.php?f=125&t=365714&p=2011659#p2011659]here[/url]

1978 Miklós Schweitzer, 2

For a distributive lattice $ L$, consider the following two statements: (A) Every ideal of $ L$ is the kernel of at least two different homomorphisms. (B) $ L$ contains no maximal ideal. Which one of these statements implies the other? (Every homomorphism $ \varphi$ of $ L$ induces an equivalence relation on $ L$: $ a \sim b$ if and only if $ a \varphi\equal{}b \varphi$. We do not consider two homomorphisms different if they imply the same equivalence relation.) [i]J. Varlet, E. Fried[/i]

2005 Gheorghe Vranceanu, 2

Prove that the sum of the $ \text{2005-th} $ powers of three pairwise distinct complex numbers is the imaginary unit if their modulus are equal and the sum of these numbers is the imaginary unit.

2017 Latvia Baltic Way TST, 8

$2017$ chess players participated in the chess tournament, each of them played exactly one chess game with each other. Let's call a trio of chess players $A, B, C$ a [i]principled [/i]one, if $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$. What is the largest possible number of threes of principled chess players?

2020 MIG, 18

Tags:
When $171$ is written as the sum of $19$ consecutive integers, the median of those numbers is $M$. When $171$ is written as the sum of $18$ consecutive integers, the median of those numbers is $N$. Find $|M - N|$. $\textbf{(A) }{-}1\qquad\textbf{(B) }{-}0.5\qquad\textbf{(C) }0\qquad\textbf{(D) }0.5\qquad\textbf{(E) }1$

2003 Irish Math Olympiad, 2

Tags: geometry
$P$, $Q$, $R$ and $S$ are (distinct) points on a circle. $PS$ is a diameter and $QR$ is parallel to the diameter $PS$. $PR$ and $QS$ meet at $A$. Let $O$ be the centre of the circle and let $B$ be chosen so that the quadrilateral $POAB$ is a parallelogram. Prove that $BQ$ = $BP$ .

2009 India IMO Training Camp, 11

Find all integers $ n\ge 2$ with the following property: There exists three distinct primes $p,q,r$ such that whenever $ a_1,a_2,a_3,\cdots,a_n$ are $ n$ distinct positive integers with the property that at least one of $ p,q,r$ divides $ a_j - a_k \ \forall 1\le j\le k\le n$, one of $ p,q,r$ divides all of these differences.

2024 Simon Marais Mathematical Competition, B3

Tags: geometry
Let $\mathcal{L}$ be the set of all lines in the plane and let $\mathcal{P}$ be the set of all points in the plane. Determine whether there exists a function $g : \mathcal{L} \to \mathcal{P}$ such that for any two distinct non-parallel lines $\ell_1, \ell_2 \in \mathcal{L}$, we have $(a)$ $g(\ell_1) \neq g(\ell_2)$, and $(b)$ if $\ell_3$ is the line passing through $g(\ell_1)$ and $g(\ell_2)$, then $g(\ell_3)$ is the intersection of $\ell_1$ and $\ell_2$.

2010 Contests, 3

Consider a triangle $XYZ$ and a point $O$ in its interior. Three lines through $O$ are drawn, parallel to the respective sides of the triangle. The intersections with the sides of the triangle determine six line segments from $O$ to the sides of the triangle. The lengths of these segments are integer numbers $a, b, c, d, e$ and $f$ (see figure). Prove that the product $a \cdot b \cdot c\cdot d \cdot e \cdot f$ is a perfect square. [asy] unitsize(1 cm); pair A, B, C, D, E, F, O, X, Y, Z; X = (1,4); Y = (0,0); Z = (5,1.5); O = (1.8,2.2); A = extension(O, O + Z - X, X, Y); B = extension(O, O + Y - Z, X, Y); C = extension(O, O + X - Y, Y, Z); D = extension(O, O + Z - X, Y, Z); E = extension(O, O + Y - Z, Z, X); F = extension(O, O + X - Y, Z, X); draw(X--Y--Z--cycle); draw(A--D); draw(B--E); draw(C--F); dot("$A$", A, NW); dot("$B$", B, NW); dot("$C$", C, SE); dot("$D$", D, SE); dot("$E$", E, NE); dot("$F$", F, NE); dot("$O$", O, S); dot("$X$", X, N); dot("$Y$", Y, SW); dot("$Z$", Z, dir(0)); label("$a$", (A + O)/2, SW); label("$b$", (B + O)/2, SE); label("$c$", (C + O)/2, SE); label("$d$", (D + O)/2, SW); label("$e$", (E + O)/2, SE); label("$f$", (F + O)/2, NW); [/asy]

2020 Korean MO winter camp, #4

Tags: geometry
$I$ is the incenter of a given triangle $\triangle ABC$. The angle bisectors of $ABC$ meet the sides at $D,E,F$, and $EF$ meets $(ABC)$ at $L$ and $T$ ($F$ is on segment $LE$.). Suppose $M$ is the midpoint of $BC$. Prove that if $DT$ is tangent to the incircle of $ABC$, then $IL$ bisects $\angle MLT$.

2013 Tournament of Towns, 6

Tags: product , sum , algebra
There are fi ve distinct real positive numbers. It is known that the total sum of their squares and the total sum of their pairwise products are equal. (a) Prove that we can choose three numbers such that it would not be possible to make a triangle with sides' lengths equal to these numbers. (b) Prove that the number of such triples is at least six (triples which consist of the same numbers in different order are considered the same).

2006 Grigore Moisil Urziceni, 1

Tags: limit , sequence
[b]a)[/b] $ \lim_{n\to\infty } \sum_{j=1}^n\frac{n}{n^2+n+j} =1 $ [b]b)[/b] $ \lim_{n\to\infty } \left( n- \sum_{j=1}^n\frac{n^2}{n^2+n+j} \right) =3/2 $ [i]Cristinel Mortici[/i]

2023 ISL, G7

Tags: geometry
Let $ABC$ be an acute, scalene triangle with orthocentre $H$. Let $\ell_a$ be the line through the reflection of $B$ with respect to $CH$ and the reflection of $C$ with respect to $BH$. Lines $\ell_b$ and $\ell_c$ are defined similarly. Suppose lines $\ell_a$, $\ell_b$, and $\ell_c$ determine a triangle $\mathcal T$. Prove that the orthocentre of $\mathcal T$, the circumcentre of $\mathcal T$, and $H$ are collinear. [i]Fedir Yudin, Ukraine[/i]

2012 ELMO Shortlist, 3

Let $s(k)$ be the number of ways to express $k$ as the sum of distinct $2012^{th}$ powers, where order does not matter. Show that for every real number $c$ there exists an integer $n$ such that $s(n)>cn$. [i]Alex Zhu.[/i]

2000 Mexico National Olympiad, 3

Given a set $A$ of positive integers, the set $A'$ is composed from the elements of $A$ and all positive integers that can be obtained in the following way: Write down some elements of $A$ one after another without repeating, write a sign $+ $ or $-$ before each of them, and evaluate the obtained expression. The result is included in $A'$. For example, if $A = \{2,8,13,20\}$, numbers $8$ and $14 = 20-2+8$ are elements of $A'$. Set $A''$ is constructed from $A'$ in the same manner. Find the smallest possible number of elements of $A$, if $A''$ contains all the integers from $1$ to $40$.

2016 Indonesia TST, 4

The Hawking Space Agency operates $n-1$ space flights between the $n$ habitable planets of the Local Galaxy Cluster. Each flight has a fixed price which is the same in both directions, and we know that using these flights, we can travel from any habitable planet to any habitable planet. In the headquarters of the Agency, there is a clearly visible board on a wall, with a portrait, containing all the pairs of different habitable planets with the total price of the cheapest possible sequence of flights connecting them. Suppose that these prices are precisely $1,2, ... , \binom{n}{2}$ monetary units in some order. prove that $n$ or $n-2$ is a square number.

2006 Baltic Way, 5

Tags: algebra
An occasionally unreliable professor has devoted his last book to a certain binary operation $*$. When this operation is applied to any two integers, the result is again an integer. The operation is known to satisfy the following axioms: $\text{a})\ x*(x*y)=y$ for all $x,y\in\mathbb{Z}$; $\text{b})\ (x*y)*y=x$ for all $x,y\in\mathbb{Z}$. The professor claims in his book that $1.$ The operation $*$ is commutative: $x*y=y*x$ for all $x,y\in\mathbb{Z}$. $2.$ The operation $*$ is associative: $(x*y)*z=x*(y*z)$ for all $x,y,z\in\mathbb{Z}$. Which of these claims follow from the stated axioms?

2017 Pan-African Shortlist, A4

Find all functions $f : R\rightarrow R$ such that $f ( f (x)+y) = f (x^2 -y)+4 f (x)y$ for all $x,y \in R$ .