Found problems: 85335
1993 Abels Math Contest (Norwegian MO), 4
Each of the $8$ vertices of a given cube is given a value $1$ or $-1$.
Each of the $6$ faces is given the value of product of its four vertices.
Let $A$ be the sum of all the $14$ values. Which are the possible values of $A$?
2020 Jozsef Wildt International Math Competition, W52
If $f\in C^{(3)}([0,1])$ such that $f(0)=f(1)=f'(0)=0$ and $|f'''(x)|\le1,(\forall)x\in[0,1]$, show that:
a)
$$|f(x)|\le\frac{x(1-x)}{\sqrt3}\cdot\left(\int^x_0\frac{f(t)}{t(1-t)}dt\right)^{1/2},(\forall)x\in[0,1]$$
b)
$$|f'(x)|\le\frac{1-2x}{\sqrt3}\cdot\left(\int^x_0\frac{|f(t)|}{t(1-t)}dt\right)^{1/2},(\forall)x\in\left[0,\frac12\right]$$
c)
$$\int^1_0(1-x)^2\cdot\frac{|f(x)|}xdx\ge9\int^1_0\left(\frac{f(x)}x\right)^2dx$$
[i]Proposed by Florin Stănescu and Şerban Cioculescu[/i]
1999 China National Olympiad, 3
A $4\times4\times4$ cube is composed of $64$ unit cubes. The faces of $16$ unit cubes are to be coloured red. A colouring is called interesting if there is exactly $1$ red unit cube in every $1\times1\times 4$ rectangular box composed of $4$ unit cubes. Determine the number of interesting colourings.
2012 Abels Math Contest (Norwegian MO) Final, 4b
Positive numbers $b_1, b_2,..., b_n$ are given so that $b_1 + b_2 + ...+ b_n \le 10$.
Further, $a_1 = b_1$ and $a_m = sa_{m-1} + b_m$ for $m > 1$, where $0 \le s < 1$.
Show that $a^2_1 + a^2_2 + ... + a^2_n \le \frac{100}{1 - s^2} $
1994 Cono Sur Olympiad, 2
Consider a circle $C$ with diameter $AB=1$. A point $P_0$ is chosen on $C$, $P_0 \ne A$, and starting in $P_0$ a sequence of points $P_1, P_2, \dots, P_n, \dots$ is constructed on $C$, in the following way: $Q_n$ is the symmetrical point of $A$ with respect of $P_n$ and the straight line that joins $B$ and $Q_n$ cuts $C$ at $B$ and $P_{n+1}$ (not necessary different). Prove that it is possible to choose $P_0$ such that:
[b]i[/b] $\angle {P_0AB} < 1$.
[b]ii[/b] In the sequence that starts with $P_0$ there are $2$ points, $P_k$ and $P_j$, such that $\triangle {AP_kP_j}$ is equilateral.
2017 China Team Selection Test, 6
For a given positive integer $n$ and prime number $p$, find the minimum value of positive integer $m$ that satisfies the following property: for any polynomial $$f(x)=(x+a_1)(x+a_2)\ldots(x+a_n)$$ ($a_1,a_2,\ldots,a_n$ are positive integers), and for any non-negative integer $k$, there exists a non-negative integer $k'$ such that $$v_p(f(k))<v_p(f(k'))\leq v_p(f(k))+m.$$ Note: for non-zero integer $N$,$v_p(N)$ is the largest non-zero integer $t$ that satisfies $p^t\mid N$.
1993 All-Russian Olympiad Regional Round, 9.3
Points $M$ and $N$ are chosen on the sides $AB$ and BC of a triangle $ABC$. The segments $AN$ and $CM$ meet at $O$ such that $AO =CO$. Is the triangle $ABC$ necessarily isosceles, if
(a) $AM = CN$?
(b) $BM = BN$?
1988 AMC 12/AHSME, 10
In an experiment, a scientific constant $C$ is determined to be $2.43865$ with an error of at most $\pm 0.00312$. The experimenter wishes to announce a value for $C$ in which every digit is significant. That is, whatever $C$ is, the announced value must be the correct result when C is rounded to that number of digits. The most accurate value the experimenter can announce for $C$ is
$ \textbf{(A)}\ 2\qquad\textbf{(B)}\ 2.4\qquad\textbf{(C)}\ 2.43\qquad\textbf{(D)}\ 2.44\qquad\textbf{(E)}\ 2.439 $
1983 All Soviet Union Mathematical Olympiad, 356
The sequences $a_n$ and $b_n$ members are the last digits of $[\sqrt{10}^n]$ and $[\sqrt{2}^n]$ respectively (here $[ ...]$ denotes the whole part of a number). Are those sequences periodical?
2007 Hanoi Open Mathematics Competitions, 15
Let $p = \overline{abc}$ be the 3-digit prime number. Prove that the equation $ax^2 + bx + c = 0$ has no rational roots.
2025 Francophone Mathematical Olympiad, 1
A finite set $\mathcal S$ of distinct positive real numbers is called [i]radiant[/i] if it satisfies the following property: if $a$ and $b$ are two distinct elements of $\mathcal S$, then $a^2 + b^2$ is also an element of $\mathcal S$.
[list=a]
[*]Does there exist a radiant set with a size greater than or equal to $4$?
[*]Determine all radiant sets of size $2$ or $3$.
[/list]
2021 International Zhautykov Olympiad, 5
On a party with $99$ guests, hosts Ann and Bob play a game (the hosts are not regarded as guests). There are $99$ chairs arranged in a circle; initially, all guests hang around those chairs. The hosts take turns alternately. By a turn, a host orders any standing guest to sit on an unoccupied chair $c$. If some chair adjacent to $c$ is already occupied, the same host orders one guest on such chair to stand up (if both chairs adjacent to $c$ are occupied, the host chooses exactly one of them). All orders are carried out immediately. Ann makes the first move; her goal is to fulfill, after some move of hers, that at least $k$ chairs are occupied. Determine the largest $k$ for which Ann can reach the goal, regardless of Bob's play.
1994 Kurschak Competition, 2
Prove that if we erase $n-3$ diagonals of a regular $n$-gon, then we may still choose $n-3$ of the remaining diagonals such that they don't intersect inside the $n$-gon; but it is possible to erase $n-2$ diagonals such that this statement doesn't hold.
MOAA Accuracy Rounds, 2021.8
Will has a magic coin that can remember previous flips. If the coin has already turned up heads $m$ times and tails $n$ times, the probability that the next flip turns up heads is exactly $\frac{m+1}{m+n+2}$. Suppose that the coin starts at $0$ flips. The probability that after $10$ coin flips, heads and tails have both turned up exactly $5$ times can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$.
[i]Proposed by Nathan Xiong[/i]
1991 AMC 12/AHSME, 29
Equilateral triangle $ABC$ has been creased and folded so that vertex $A$ now rests at $A'$ on $\overline{BC}$ as shown. If $BA' = 1$ and $A'C = 2$ then the length of crease $\overline{PQ}$ is
[asy]
size(170);
defaultpen(linewidth(0.7)+fontsize(10));
pair B=origin, A=(1.5,3*sqrt(3)/2), C=(3,0), D=(1,0), P=B+1.6*dir(B--A), Q=C+1.2*dir(C--A);
draw(B--P--D--B^^P--Q--D--C--Q);
draw(Q--A--P, linetype("4 4"));
label("$A$", A, N);
label("$B$", B, W);
label("$C$", C, E);
label("$A'$", D, S);
label("$P$", P, W);
label("$Q$", Q, E);
[/asy]
$ \textbf{(A)}\ \frac{8}{5}\qquad\textbf{(B)}\ \frac{7}{20}\sqrt{21}\qquad\textbf{(C)}\ \frac{1+\sqrt{5}}{2}\qquad\textbf{(D)}\ \frac{13}{8}\qquad\textbf{(E)}\ \sqrt{3} $
2008 AMC 8, 13
Mr. Harman needs to know the combined weight in pounds of three boxes he wants to mail. However, the only available scale is not accurate for weights less than $100$ pounds or more than $150$ pounds. So the boxes are weighed in pairs in every possible way. The results are $122$, $125$ and $127$ pounds. What is the combined weight in pounds of the three boxes?
$\textbf{(A)}\ 160\qquad
\textbf{(B)}\ 170\qquad
\textbf{(C)}\ 187\qquad
\textbf{(D)}\ 195\qquad
\textbf{(E)}\ 354$
Durer Math Competition CD 1st Round - geometry, 2013.C1
Each side of a triangle is extended in the same clockwise direction by the length of the given side as shown in the figure. How many times the area of the triangle, obtained by connecting the endpoints, is the area of the original triangle?
[img]https://cdn.artofproblemsolving.com/attachments/1/c/a169d3ab99a894667caafee6dbf397632e57e0.png[/img]
2016 Bulgaria National Olympiad, Problem 3
For $a,b,c,d>0$ prove that $$\frac {a+\sqrt{ab}+\sqrt[3]{abc}+\sqrt[4]{abcd}}{4} \leq \sqrt[4]{a.\frac{a+b}{2}.\frac{a+b+c}{3}.\frac{a+b+c+d}{4}}$$
2004 Germany Team Selection Test, 2
Find all functions $f: \Bbb{R}_{0}^{+}\rightarrow \Bbb{R}_{0}^{+}$ with the following properties:
(a) We have $f\left( xf\left( y\right) \right) \cdot f\left( y\right) =f\left( x+y\right)$ for all $x$ and $y$.
(b) We have $f\left(2\right) = 0$.
(c) For every $x$ with $0 < x < 2$, the value $f\left(x\right)$ doesn't equal $0$.
[b]NOTE.[/b] We denote by $\Bbb{R}_{0}^{+}$ the set of all non-negative real numbers.
1993 IMO, 6
Let $n > 1$ be an integer. In a circular arrangement of $n$ lamps $L_0, \ldots, L_{n-1},$ each of of which can either ON or OFF, we start with the situation where all lamps are ON, and then carry out a sequence of steps, $Step_0, Step_1, \ldots .$ If $L_{j-1}$ ($j$ is taken mod $n$) is ON then $Step_j$ changes the state of $L_j$ (it goes from ON to OFF or from OFF to ON) but does not change the state of any of the other lamps. If $L_{j-1}$ is OFF then $Step_j$ does not change anything at all. Show that:
(i) There is a positive integer $M(n)$ such that after $M(n)$ steps all lamps are ON again,
(ii) If $n$ has the form $2^k$ then all the lamps are ON after $n^2-1$ steps,
(iii) If $n$ has the form $2^k + 1$ then all lamps are ON after $n^2 - n + 1$ steps.
2002 Czech and Slovak Olympiad III A, 2
Consider an arbitrary equilateral triangle $KLM$, whose vertices $K, L$ and $M$ lie on the sides $AB, BC$ and $CD$, respectively, of a given square $ABCD$. Find the locus of the midpoints of the sides $KL$ of all such triangles $KLM$.
2011 Sharygin Geometry Olympiad, 3
Given two tetrahedrons $A_1A_2A_3A_4$ and $B_1B_2B_3B_4$. Consider six pairs of edges $A_iA_j$ and $B_kB_l$, where ($i, j, k, l$) is a transposition of numbers ($1, 2, 3, 4$) (for example $A_1A_2$ and $B_3B_4$). It is known that for all but one such pairs the edges are perpendicular. Prove that the edges in the remaining pair also are perpendicular.
2022 Thailand TSTST, 3
An odd positive integer $n$ is called pretty if there exists at least one permutation $a_1, a_2,..., a_n$, of $1,2,...,n$, such that all $n$ sums $a_1-a_2+a_3-...+a_n$, $a_2-a_3+a_4-...+a_1$,..., $a_n-a_1+a_2-...+a_{n-1}$ are positive. Find all pretty integers.
2022 BMT, 5
Compute the last digit of $(5^{20}+2)^3.$
2007 Bulgaria Team Selection Test, 3
Let $I$ be the center of the incircle of non-isosceles triangle $ABC,A_{1}=AI\cap BC$ and $B_{1}=BI\cap AC.$ Let $l_{a}$ be the line through $A_{1}$ which is parallel to $AC$ and $l_{b}$ be the line through $B_{1}$ parallel to $BC.$ Let $l_{a}\cap CI=A_{2}$ and $l_{b}\cap CI=B_{2}.$ Also $N=AA_{2}\cap BB_{2}$ and $M$ is the midpoint of $AB.$ If $CN\parallel IM$ find $\frac{CN}{IM}$.