Found problems: 85335
2022 Iran MO (2nd round), 2
Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for any real value of $x,y$ we have:
$$f(xf(y)+f(x)+y)=xy+f(x)+f(y)$$
2017 USA TSTST, 2
Ana and Banana are playing a game. First Ana picks a word, which is defined to be a nonempty sequence of capital English letters. (The word does not need to be a valid English word.) Then Banana picks a nonnegative integer $k$ and challenges Ana to supply a word with exactly $k$ subsequences which are equal to Ana's word. Ana wins if she is able to supply such a word, otherwise she loses.
For example, if Ana picks the word "TST", and Banana chooses $k=4$, then Ana can supply the word "TSTST" which has 4 subsequences which are equal to Ana's word.
Which words can Ana pick so that she wins no matter what value of $k$ Banana chooses?
(The subsequences of a string of length $n$ are the $2^n$ strings which are formed by deleting some of its characters, possibly all or none, while preserving the order of the remaining characters.)
[i]Proposed by Kevin Sun
2005 Today's Calculation Of Integral, 85
Evaluate
\[\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} \frac{[n\sin x]}{n}\ dx\]
where $ [x] $ is the integer equal to $ x $ or less than $ x $.
2009 Argentina Iberoamerican TST, 2
Let $ a$ and $ k$ be positive integers. Let $ a_i$ be the sequence defined by
$ a_1 \equal{} a$ and
$ a_{n \plus{} 1} \equal{} a_n \plus{} k\pi(a_n)$
where
$ \pi(x)$ is the product of the digits of $ x$ (written in base ten)
Prove that we can choose $ a$ and $ k$ such that the infinite sequence $ a_i$ contains exactly $ 100$ distinct terms
2018 Tournament Of Towns, 5.
There are 100 houses in the street, divided into 50 pairs. In each pair houses are right across the street one from another. On the right side of the street the houses have even numbers, while the houses on the left side have odd numbers. On both sides of the street the numbers increase from the beginning to the end of the street, but are not necessarily consecutive (some numbers may be omitted). For each house on the right side of the street, the difference between its number and the number of the opposite house was computed, and it turned out that all these values were different. Let $n$ be the greatest number of a house on this street. Find the smallest possible value of $n$. (8 points)
Maxim Didin
1976 IMO Longlists, 36
Three concentric circles with common center $O$ are cut by a common chord in successive points $A, B, C$. Tangents drawn to the circles at the points $A, B, C$ enclose a triangular region. If the distance from point $O$ to the common chord is equal to $p$, prove that the area of the region enclosed by the tangents is equal to
\[\frac{AB \cdot BC \cdot CA}{2p}\]
1988 IMO Longlists, 34
Let $ ABC$ be an acute-angled triangle. The lines $ L_{A}$, $ L_{B}$ and $ L_{C}$ are constructed through the vertices $ A$, $ B$ and $ C$ respectively according the following prescription: Let $ H$ be the foot of the altitude drawn from the vertex $ A$ to the side $ BC$; let $ S_{A}$ be the circle with diameter $ AH$; let $ S_{A}$ meet the sides $ AB$ and $ AC$ at $ M$ and $ N$ respectively, where $ M$ and $ N$ are distinct from $ A$; then let $ L_{A}$ be the line through $ A$ perpendicular to $ MN$. The lines $ L_{B}$ and $ L_{C}$ are constructed similarly. Prove that the lines $ L_{A}$, $ L_{B}$ and $ L_{C}$ are concurrent.
2020-21 IOQM India, 30
Find the number of pairs $(a,b)$ of natural nunbers such that $b$ is a 3-digit number, $a+1$ divides $b-1$ and $b$ divides $a^{2} + a + 2$.
2013 May Olympiad, 3
Many distinct points are marked in the plane. A student draws all the segments determined by those points, and then draws a line [i]r[/i] that does not pass through any of the marked points, but cuts exactly $60$ drawn segments. How many segments were not cut by [i]r[/i]? Give all possibilites.
2005 Miklós Schweitzer, 10
Given 5 nonzero vectors in three-dimensional Euclidean space, prove that the sum of their pairwise angles is at most $6\pi$.
III Soros Olympiad 1996 - 97 (Russia), 11.3
Prove that the equation x^3- x- 3 = 0 has a unique root. Which is greater, the root of this equation or $\sqrt[5]{13}$? (Use of a calculator is prohibited.)
1987 AMC 12/AHSME, 9
The first four terms of an arithmetic sequence are $a, x, b, 2x$. The ratio of $a$ to $b$ is
$ \textbf{(A)}\ \frac{1}{4} \qquad\textbf{(B)}\ \frac{1}{3} \qquad\textbf{(C)}\ \frac{1}{2} \qquad\textbf{(D)}\ \frac{2}{3} \qquad\textbf{(E)}\ 2 $
2019 New Zealand MO, 5
An equilateral triangle is partitioned into smaller equilateral triangular pieces. Prove that two of the pieces are the same size.
1983 AIME Problems, 3
What is the product of the real roots of the equation \[x^2 + 18x + 30 = 2 \sqrt{x^2 + 18x + 45}\,\,?\]
2010 Kosovo National Mathematical Olympiad, 1
Solve the equation
$|x+1|-|x-1|=2$.
2011 Czech-Polish-Slovak Match, 3
Let $a$ be any integer. Prove that there are infinitely many primes $p$ such that \[ p\,|\,n^2+3\qquad\text{and}\qquad p\,|\,m^3-a \] for some integers $n$ and $m$.
2021 China Second Round A1, 3
Let $\{a_n\}$, $\{b_n\}$ be sequences of positive real numbers satisfying $$a_n=\sqrt{\frac{1}{100} \sum\limits_{j=1}^{100} b_{n-j}^2}$$ and $$b_n=\sqrt{\frac{1}{100} \sum\limits_{j=1}^{100} a_{n-j}^2}$$
For all $n\ge 101$. Prove that there exists $m\in \mathbb{N}$ such that $|a_m-b_m|<0.001$
[url=https://zhuanlan.zhihu.com/p/417529866] Link [/url]
1992 Baltic Way, 17
Quadrangle $ ABCD$ is inscribed in a circle with radius 1 in such a way that the diagonal $ AC$ is a diameter of the circle, while the other diagonal $ BD$ is as long as $ AB$. The diagonals intersect at $ P$. It is known that the length of $ PC$ is $ 2/5$. How long is the side $ CD$?
2008 District Olympiad, 4
Let $ M$ be the set of those positive integers which are not divisible by $ 3$. The sum of $ 2n$ consecutive elements of $ M$ is $ 300$. Determine $ n$.
DMM Individual Rounds, 2011 Tie
[b]p1.[/b] $2011$ distinct points are arranged along the perimeter of a circle. We choose without replacement four points $P$, $Q$, $R$, $S$. What is the probability that no two of the segments $P Q$, $QR$, $RS$, $SP$ intersect (disregarding the endpoints)?
[b]p2.[/b] In Soviet Russia, all phone numbers are between three and six digits and contain only the digits $1$, $2$, and $3$. No phone number may be the prefix of another phone number, so, for example, we cannot have the phone numbers $123$ and $12332$. If the Soviet bureaucracy has preassigned $10$ phone numbers of length $3$, $20$ numbers of length $4$, and $77$ phone numbers of length $6$, what is the maximum number of phone numbers of length $5$ that the authorities can allocate?
[b]p3.[/b] The sequence $\{a_n\}_{n\ge 1}$ is defined as follows: we have $a_1 = 1$, $a_2 = 0$, and for $n \ge 3$ we have $$a_n = \frac12 \sum\limits_{\substack{1\le i,j\\ i+j+k=n}} a_ia_ja_k.$$
Find $$\sum^{\infty}_{n=1} \frac{a_n}{2^n}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1983 Austrian-Polish Competition, 6
Six straight lines are given in space. Among any three of them, two are perpendicular. Show that the given lines can be labeled $\ell_1,...,\ell_6$ in such a way that $\ell_1, \ell_2, \ell_3$ are pairwise perpendicular, and so are $\ell_4, \ell_5, \ell_6$.
1997 Federal Competition For Advanced Students, Part 2, 3
Let be given a triangle $ABC$. Points $P$ on side $AC$ and $Y$ on the production of $CB$ beyond $B$ are chosen so that $Y$ subtends equal angles with $AP$ and $PC$. Similarly, $Q$ on side $BC$ and $X$ on the production of $AC$ beyond $C$ are such that $X$ subtends equal angles with $BQ$ and $QC$. Lines $YP$ and $XB$ meet at $R$, $XQ$ and $YA$ meet at $S$, and $XB$ and $YA$ meet at $D$. Prove that $PQRS$ is a parallelogram if and only if $ACBD$ is a cyclic quadrilateral.
2011 Math Prize For Girls Problems, 17
There is a polynomial $P$ such that for every real number $x$,
\[
x^{512} + x^{256} + 1 = (x^2 + x + 1) P(x).
\]
When $P$ is written in standard polynomial form, how many of its coefficients are nonzero?
2008 Moldova National Olympiad, 12.2
Find the exact value of $ E\equal{}\displaystyle\int_0^{\frac\pi2}\cos^{1003}x\text{d}x\cdot\int_0^{\frac\pi2}\cos^{1004}x\text{d}x\cdot$.
2008 All-Russian Olympiad, 2
Numbers $ a,b,c$ are such that the equation $ x^3 \plus{} ax^2 \plus{} bx \plus{} c$ has three real roots.Prove that if $ \minus{} 2\leq a \plus{} b \plus{} c\leq 0$,then at least one of these roots belongs to the segment $ [0,2]$