This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2004 India IMO Training Camp, 3

Suppose the polynomial $P(x) \equiv x^3 + ax^2 + bx +c$ has only real zeroes and let $Q(x) \equiv 5x^2 - 16x + 2004$. Assume that $P(Q(x)) = 0$ has no real roots. Prove that $P(2004) > 2004$

1999 Switzerland Team Selection Test, 6

Prove that if $m$ and $n$ are positive integers such that $m^2 + n^2 - m$ is divisible by $2mn$, then $m$ is a perfect square.

MOAA Gunga Bowls, 2021.6

Tags:
Determine the number of triangles, of any size and shape, in the following figure: [asy] size(4cm); draw(2*dir(0)--dir(120)--dir(240)--cycle); draw(dir(60)--2*dir(180)--dir(300)--cycle); [/asy] [i]Proposed by William Yue[/i]

2000 Denmark MO - Mohr Contest, 2

Three identical spheres fit into a glass with rectangular sides and bottom and top in the form of regular hexagons such that every sphere touches every side of the glass. The glass has volume $108$ cm$^3$. What is the sidelength of the bottom? [img]https://1.bp.blogspot.com/-hBkYrORoBHk/XzcDt7B83AI/AAAAAAAAMXs/P5PGKTlNA7AvxkxMqG-qxqDVc9v9cU0VACLcBGAsYHQ/s0/2000%2BMohr%2Bp2.png[/img]

2019 Centers of Excellency of Suceava, 2

For a natural number $ n\ge 2, $ calculate the integer part of $ \sqrt[n]{1+n}-\sqrt {2/n} . $ [i]Dan Nedeianu[/i]

1990 Tournament Of Towns, (262) 6

There are some ink-blots on a white paper square with side length $a$. The area of each blot is not greater than $1$ and every line parallel to any one of the sides of the square intersects no more than one blot. Prove that the total area of the blots is not greater than $a$. (A. Razborov, Moscow)

2022 HMNT, 3

Alice is bored in class, so she thinks of a positive integer. Every second after that, she subtracts from her current number its smallest prime divisor, possibly itself. After 2022 seconds, she realizes that her number is prime. Find the sum of all possible values of her initial number.

2018 Moldova Team Selection Test, 12

Let $p>3$ is a prime number and $k=\lfloor\frac{2p}{3}\rfloor$. Prove that \[{p \choose 1}+{p \choose 2}+\cdots+{p \choose k}\] is divisible by $p^{2}$.

2007 Estonia Team Selection Test, 2

Let $D$ be the foot of the altitude of triangle $ABC$ drawn from vertex $A$. Let $E$ and $F$ be points symmetric to $D$ w.r.t. lines $AB$ and $AC$, respectively. Let $R_1$ and $R_2$ be the circumradii of triangles $BDE$ and $CDF$, respectively, and let $r_1$ and $r_2$ be the inradii of the same triangles. Prove that $|S_{ABD} - S_{ACD}| > |R_1r_1 - R_2r_2|$

2021 Brazil EGMO TST, 5

Let $S$ be a set, such that for every positive integer $n$, we have $|S\cap T|=1$, where $T=\{n,2n,3n\}$. Prove that if $2\in S$, then $13824\notin S$.

2023 New Zealand MO, 3

Let $ABCD$ be a square (vertices labelled in clockwise order). Let $Z$ be any point on diagonal $AC$ between $A$ and $C$ such that $AZ > ZC$. Points $X$ and $Y$ exist such that $AXY Z $ is a square (vertices labelled in clockwise order) and point $B$ lies inside $AXY Z$. Let $M$ be the point of intersection of lines $BX$ and $DZ$ (extended if necessary). Prove that $C$, $M$ and $Y$ are colinear

2004 Germany Team Selection Test, 3

Given six real numbers $a$, $b$, $c$, $x$, $y$, $z$ such that $0 < b-c < a < b+c$ and $ax + by + cz = 0$. What is the sign of the sum $ayz + bzx + cxy$ ?

Math Hour Olympiad, Grades 5-7, 2012.57

[u]Round 1[/u] [b]p1.[/b] Tom and Jerry stole a chain of $7$ sausages and are now trying to divide the bounty. They take turns biting the sausages at one of the connections. When one of them breaks a connection, he may eat any single sausages that may fall out. Tom takes the first bite. Each of them is trying his best to eat more sausages than his opponent. Who will succeed? [b]p2. [/b]The King of the Mountain Dwarves wants to light his underground throne room by placing several torches so that the whole room is lit. The king, being very miserly, wants to use as few torches as possible. What is the least number of torches he could use? (You should show why he can't do it with a smaller number of torches.) This is the shape of the throne room: [img]https://cdn.artofproblemsolving.com/attachments/b/2/719daafd91fc9a11b8e147bb24cb66b7a684e9.png[/img] Also, the walls in all rooms are lined with velvet and do not reflect the light. For example, the picture on the right shows how another room in the castle is partially lit. [img]https://cdn.artofproblemsolving.com/attachments/5/1/0f6971274e8c2ff3f2d0fa484b567ff3d631fb.png[/img] [b]p3.[/b] In the Hundred Acre Wood, all the animals are either knights or liars. Knights always tell the truth and liars always lie. One day in the Wood, Winnie-the-Pooh, a knight, decides to visit his friend Rabbit, also a noble knight. Upon arrival, Pooh finds his friend sitting at a round table with $5$ other guests. One-by-one, Pooh asks each person at the table how many of his two neighbors are knights. Surprisingly, he gets the same answer from everybody! "Oh bother!" proclaims Pooh. "I still don't have enough information to figure out how many knights are at this table." "But it's my birthday," adds one of the guests. "Yes, it's his birthday!" agrees his neighbor. Now Pooh can tell how many knights are at the table. Can you? [b]p4.[/b] Several girls participate in a tennis tournament in which each player plays each other player exactly once. At the end of the tournament, it turns out that each player has lost at least one of her games. Prove that it is possible to find three players $A$, $B$, and $C$ such that $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$. [b]p5.[/b] There are $40$ piles of stones with an equal number of stones in each. Two players, Ann and Bob, can select any two piles of stones and combine them into one bigger pile, as long as this pile would not contain more than half of all the stones on the table. A player who can’t make a move loses. Ann goes first. Who wins? [u]Round 2[/u] [b]p6.[/b] In a galaxy far, far away, there is a United Galactic Senate with $100$ Senators. Each Senator has no more than three enemies. Tired of their arguments, the Senators want to split into two parties so that each Senator has no more than one enemy in his own party. Prove that they can do this. (Note: If $A$ is an enemy of $B$, then $B$ is an enemy of $A$.) [b]p7.[/b] Harry has a $2012$ by $2012$ chessboard and checkers numbered from $1$ to $2012 \times 2012$. Can he place all the checkers on the chessboard in such a way that whatever row and column Professor Snape picks, Harry will be able to choose three checkers from this row and this column such that the product of the numbers on two of the checkers will be equal to the number on the third? [img]https://cdn.artofproblemsolving.com/attachments/b/3/a87d559b340ceefee485f41c8fe44ae9a59113.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 HMNT, 7

Find the number of ordered $2012$-tuples of integers $(x_1, x_2, . . . , x_{2012})$, with each integer between $0$ and $2011$ inclusive, such that the sum $x_1 + 2x_2 + 3x_3 + · · · + 2012x_{2012}$ is divisible by $2012$.

2023 Thailand TST, 2

Find all positive integers $n \geqslant 2$ for which there exist $n$ real numbers $a_1<\cdots<a_n$ and a real number $r>0$ such that the $\tfrac{1}{2}n(n-1)$ differences $a_j-a_i$ for $1 \leqslant i<j \leqslant n$ are equal, in some order, to the numbers $r^1,r^2,\ldots,r^{\frac{1}{2}n(n-1)}$.

2009 Ukraine Team Selection Test, 2

Tags: inequalities
Let $ a$, $ b$, $ c$ are sides of a triangle. Find the least possible value $ k$ such that the following inequality always holds: $ \left|\frac{a\minus{}b}{a\plus{}b}\plus{}\frac{b\minus{}c}{b\plus{}c}\plus{}\frac{c\minus{}a}{c\plus{}a}\right|<k$ [i](Vitaly Lishunov)[/i]

2024 Auckland Mathematical Olympiad, 7

Tags: game theory
There are $20$ points marked on a circle. Two players take turns drawing chords with ends at marked points that do not intersect the already drawn chords. The one who cannot make the next move loses. Who can secure their win?

2015 Singapore Junior Math Olympiad, 5

Find all positive integers $k$ such that $k^k +1$ is divisible by $30$. Justify your answer.

Ukrainian From Tasks to Tasks - geometry, 2014.4

In the triangle $ABC$ it is known that $AC = 21$ cm, $BC = 28$ cm and $\angle C = 90^o$. On the hypotenuse $AB$, we construct a square $ABMN$ with center $O$ such that the segment $CO$ intersects the hypotenuse $AB$ at the point $K$. Find the lengths of the segments $AK$ and $KB$.

2009 Puerto Rico Team Selection Test, 1

By the time a party is over, $ 28$ handshakes have occurred. If everyone shook everyone else's hand once, how many people attended the party?

2017 Math Prize for Girls Problems, 12

Tags:
Let $S$ be the set of all real values of $x$ with $0 < x < \pi/2$ such that $\sin x$, $\cos x$, and $\tan x$ form the side lengths (in some order) of a right triangle. Compute the sum of $\tan^2 x$ over all $x$ in $S$.

2015 IFYM, Sozopol, 1

Tags: excircle , geometry
Let $AA_1$ be an altitude in $\Delta ABC$. Let $H_a$ be the orthocenter of the triangle with vertices the tangential points of the excircle to $\Delta ABC$, opposite to $A$. The points $B_1$, $C_1$, $H_b$, and $H_c$ are defined analogously. Prove that $A_1 H_a$, $B_1 H_b$, and $C_1 H_c$ are concurrent.

2007 Princeton University Math Competition, 4

Tags: geometry
$ABCDE$ is a regular pentagon (with vertices in that order) inscribed in a circle of radius $1$. Find $AB \cdot AC$.

2005 Mediterranean Mathematics Olympiad, 3

Let $A_1,A_2,\ldots , A_n$ $(n\geq 3)$ be finite sets of positive integers. Prove, that \[ \displaystyle \frac{1}{n} \left( \sum_{i=1}^n |A_i|\right) + \frac{1}{{{n}\choose{3}}}\sum_{1\leq i < j < k \leq n} |A_i \cap A_j \cap A_k| \geq \frac{2}{{{n}\choose{2}}}\sum_{1\leq i < j \leq n}|A_i \cap A_j| \] holds, where $|E|$ is the cardinality of the set $E$

2003 IMO Shortlist, 3

Consider pairs of the sequences of positive real numbers \[a_1\geq a_2\geq a_3\geq\cdots,\qquad b_1\geq b_2\geq b_3\geq\cdots\] and the sums \[A_n = a_1 + \cdots + a_n,\quad B_n = b_1 + \cdots + b_n;\qquad n = 1,2,\ldots.\] For any pair define $c_n = \min\{a_i,b_i\}$ and $C_n = c_1 + \cdots + c_n$, $n=1,2,\ldots$. (1) Does there exist a pair $(a_i)_{i\geq 1}$, $(b_i)_{i\geq 1}$ such that the sequences $(A_n)_{n\geq 1}$ and $(B_n)_{n\geq 1}$ are unbounded while the sequence $(C_n)_{n\geq 1}$ is bounded? (2) Does the answer to question (1) change by assuming additionally that $b_i = 1/i$, $i=1,2,\ldots$? Justify your answer.