This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2005 South East Mathematical Olympiad, 3

Let $n$ be positive integer, set $M = \{ 1, 2, \ldots, 2n \}$. Find the minimum positive integer $k$ such that for any subset $A$ (with $k$ elements) of set $M$, there exist four pairwise distinct elements in $A$ whose sum is $4n + 1$.

2004 Romania National Olympiad, 1

On the sides $AB,AD$ of the rhombus $ABCD$ are the points $E,F$ such that $AE=DF$. The lines $BC,DE$ intersect at $P$ and $CD,BF$ intersect at $Q$. Prove that: (a) $\frac{PE}{PD} + \frac{QF}{QB} = 1$; (b) $P,A,Q$ are collinear. [i]Virginia Tica, Vasile Tica[/i]

2008 Romanian Master of Mathematics, 2

Prove that every bijective function $ f: \mathbb{Z}\rightarrow\mathbb{Z}$ can be written in the way $ f\equal{}u\plus{}v$ where $ u,v: \mathbb{Z}\rightarrow\mathbb{Z}$ are bijective functions.

2005 JBMO Shortlist, 2

Let $ABCD$ be an isosceles trapezoid with $AB=AD=BC, AB//CD, AB>CD$. Let $E= AC \cap BD$ and $N$ symmetric to $B$ wrt $AC$. Prove that the quadrilateral $ANDE$ is cyclic.

2016 Sharygin Geometry Olympiad, 1

An altitude $AH$ of triangle $ABC$ bisects a median $BM$. Prove that the medians of triangle $ABM$ are sidelengths of a right-angled triangle. by Yu.Blinkov

1966 Poland - Second Round, 3

$6$ points are selected on the plane, none of which $3$ lie on one straight line, and all pairwise segments connecting these points are plotted. Some of the sections are plotted in red and others in blue. Prove that any three of the given points are the vertices of a triangle with sides of the same color.

2022 Novosibirsk Oral Olympiad in Geometry, 2

A quadrilateral is given, in which the lengths of some two sides are equal to $1$ and $4$. Also, the diagonal of length $2$ divides it into two isosceles triangles. Find the perimeter of this quadrilateral.

2007 Polish MO Finals, 5

5. In tetrahedron $ABCD$ following equalities hold: $\angle BAC+\angle BDC=\angle ABD+\angle ACD$ $\angle BAD+\angle BCD=\angle ABC+\angle ADC$ Prove that center of sphere circumscribed about ABCD lies on a line through midpoints of $AB$ and $CD$.

2003 Purple Comet Problems, 9

Tags: function
Let $f$ be a real-valued function of real and positive argument such that $f(x) + 3xf(\tfrac1x) = 2(x + 1)$ for all real numbers $x > 0$. Find $f(2003)$.

2010 Cuba MO, 3

Let $ABC$ be a right triangle at $B$. Let $D$ be a point such that $BD\perp AC$ and $DC = AC$. Find the ratio $\frac{AD}{AB}$.

2010 All-Russian Olympiad Regional Round, 9.3

Is it possible for some natural number $k$ to divide all natural numbers from $1$ to $k$ into two groups and write down the numbers in each group in a row in some order so that you get two the same numbers? [hide=original wording beacuse it doesn't make much sense]Можно ли при каком-то натуральном k разбить все натуральные числа от 1 до k на две группы и выписать числа в каждой группе подряд в некотором порядке так, чтобы получились два одинаковых числа?[/hide]

2012 Tournament of Towns, 4

Alex marked one point on each of the six interior faces of a hollow unit cube. Then he connected by strings any two marked points on adjacent faces. Prove that the total length of these strings is at least $6\sqrt2$.

1967 IMO Shortlist, 3

Prove the trigonometric inequality $\cos x < 1 - \frac{x^2}{2} + \frac{x^4}{16},$ when $x \in \left(0, \frac{\pi}{2} \right).$

2021 Bangladeshi National Mathematical Olympiad, 11

Let $ABCD$ be a square such that $A=(0,0)$ and $B=(1,1)$. $P(\frac{2}{7},\frac{1}{4})$ is a point inside the square. An ant starts walking from $P$, touches $3$ sides of the square and comes back to the point $P$. The least possible distance traveled by the ant can be expressed as $\frac{\sqrt{a}}{b}$, where $a$ and $b$ are integers and $a$ not divisible by any square number other than $1$. What is the value of $(a+b)$?

2013 Gheorghe Vranceanu, 2

Given two natural numbers $ n\ge 2,a, $ prove that there exists another natural number $ v\ge 2 $ such that: $$ \frac{v+\sqrt{v^2-4}}{2} =\left( \frac{n+\sqrt{n^2-4}}{2} \right)^a $$

2012 QEDMO 11th, 4

The fields of an $n\times n$ chess board are colored black and white, such that in every small $2\times 2$-square both colors should be the same number. How many there possibilities are for this?

1991 IMO, 2

Let $ \,ABC\,$ be a triangle and $ \,P\,$ an interior point of $ \,ABC\,$. Show that at least one of the angles $ \,\angle PAB,\;\angle PBC,\;\angle PCA\,$ is less than or equal to $ 30^{\circ }$.

2021 Kyiv Mathematical Festival, 3

Tags: geometry
Let $AD$ be the altitude, $AE$ be the median, and $O$ be the circumcenter of a triangle $ABC.$ Points $X$ and $Y$ are selected inside the triangle such that $\angle BAX=\angle CAY,$ $OX\perp AX,$ and $OY\perp AY.$ Prove that points $D,E,X,Y$ are concyclic. (M. Kurskiy)

2008 JBMO Shortlist, 9

Tags: geometry
Let $O$ be a point inside the parallelogram $ABCD$ such that $\angle AOB + \angle COD = \angle BOC + \angle AOD$. Prove that there exists a circle $k$ tangent to the circumscribed circles of the triangles $\vartriangle AOB, \vartriangle BOC, \vartriangle COD$ and $\vartriangle DOA$.

1995 All-Russian Olympiad Regional Round, 11.4

there are some identical squares with sides parallel, in a plane. Among any $k+1$ of them, there are two with a point in common. Prove they can be divided into $2k-1$ sets, such that all the squares in one set aint pairwise disjoint.

2010 Chile National Olympiad, 4

Let $m, n$ integers such that satisfy $$m + n\sqrt2 = \left(1 +\sqrt2\right)^{2010} .$$ Find the remainder that is obtained when dividing $n$ by $5$.

1994 Denmark MO - Mohr Contest, 5

In a right-angled and isosceles triangle, the two catheti are both length $1$. Find the length of the shortest line segment dividing the triangle into two figures with the same area, and specify the location of this line segment

2015 IMC, 9

An $n \times n$ complex matrix $A$ is called \emph{t-normal} if $AA^t = A^t A$ where $A^t$ is the transpose of $A$. For each $n$, determine the maximum dimension of a linear space of complex $n \times n$ matrices consisting of t-normal matrices. Proposed by Shachar Carmeli, Weizmann Institute of Science

1995 IMO, 3

Determine all integers $ n > 3$ for which there exist $ n$ points $ A_{1},\cdots ,A_{n}$ in the plane, no three collinear, and real numbers $ r_{1},\cdots ,r_{n}$ such that for $ 1\leq i < j < k\leq n$, the area of $ \triangle A_{i}A_{j}A_{k}$ is $ r_{i} \plus{} r_{j} \plus{} r_{k}$.

2020 LMT Fall, A28 B30

Tags:
Arthur has a regular 11-gon. He labels the vertices with the letters in $CORONAVIRUS$ in consecutive order. Every non-ordered set of 3 letters that forms an isosceles triangle is a member of a set $S$, i.e. $\{C, O, R\}$ is in $S$. How many elements are in $S$? [i]Proposed by Sammy Chareny[/i]