This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

Ukrainian TYM Qualifying - geometry, II.1

Inside a right cylinder with a radius of the base $R$ are placed $k$ ($k\ge 3$) of equal balls, each of which touches the side surface and the lower base of the cylinder and, in addition, exactly two other balls. After that, another equal ball is placed inside the cylinder so that it touches the upper base of the cylinder and all other balls. Find the volume $V (R, k)$ of the cylinder.

Kyiv City MO 1984-93 - geometry, 1988.10.2

Given an arbitrary tetrahedron. Prove that its six edges can be divided into two triplets so that from each triple it was possible to form a triangle.

2010 Saudi Arabia IMO TST, 3

Find all primes $p$ for which $p^2 - p + 1$ is a perfect cube.

1978 All Soviet Union Mathematical Olympiad, 266

Prove that for every tetrahedron there exist two planes such that the projection areas on those planes ratio is not less than $\sqrt 2$.

2009 Today's Calculation Of Integral, 501

Find the volume of the uion $ A\cup B\cup C$ of the three subsets $ A,\ B,\ C$ in $ xyz$ space such that: \[ A\equal{}\{(x,\ y,\ z)\ |\ |x|\leq 1,\ y^2\plus{}z^2\leq 1\}\] \[ B\equal{}\{(x,\ y,\ z)\ |\ |y|\leq 1,\ z^2\plus{}x^2\leq 1\}\] \[ C\equal{}\{(x,\ y,\ z)\ |\ |z|\leq 1,\ x^2\plus{}y^2\leq 1\}\]

1991 All Soviet Union Mathematical Olympiad, 553

The chords $AB$ and $CD$ of a sphere intersect at $X. A, C$ and $X$ are equidistant from a point $Y$ on the sphere. Show that $BD$ and $XY$ are perpendicular.

2004 AMC 10, 25

Three mutually tangent spheres of radius 1 rest on a horizontal plane. A sphere of radius 2 rests on them. What is the distance from the plane to the top of the larger sphere? $ \textbf{(A)}\; 3+\frac{\sqrt{30}}2\qquad \textbf{(B)}\; 3+\frac{\sqrt{69}}3\qquad \textbf{(C)}\; 3+\frac{\sqrt{123}}4\qquad \textbf{(D)}\; \frac{52}9\qquad \textbf{(E)}\; 3+2\sqrt{2} $

2006 Sharygin Geometry Olympiad, 25

In the tetrahedron $ABCD$ , the dihedral angles at the $BC, CD$, and $DA$ edges are equal to $\alpha$, and for the remaining edges equal to $\beta$. Find the ratio $AB / CD$.

Kyiv City MO 1984-93 - geometry, 1989.10.5

The base of the quadrangular pyramid $SABCD$ is a quadrilateral $ABCD$, the diagonals of which are perpendicular. The apex of the pyramid is projected at intersection point $O$ of the diagonals of the base. Prove that the feet of the perpendiculars drawn from point $O$ to the side faces of the pyramid lie on one circle.

1980 AMC 12/AHSME, 26

Four balls of radius 1 are mutually tangent, three resting on the floor and the fourth resting on the others. A tetrahedron, each of whose edges have length $s$, is circumscribed around the balls. Then $s$ equals $\text{(A)} \ 4\sqrt 2 \qquad \text{(B)} \ 4\sqrt 3 \qquad \text{(C)} \ 2\sqrt 6 \qquad \text{(D)} \ 1+2\sqrt 6 \qquad \text{(E)} \ 2+2\sqrt 6$

2018 Indonesia Juniors, day 2

P6. It is given the integer $Y$ with $Y = 2018 + 20118 + 201018 + 2010018 + \cdots + 201 \underbrace{00 \ldots 0}_{\textrm{100 digits}} 18.$ Determine the sum of all the digits of such $Y$. (It is implied that $Y$ is written with a decimal representation.) P7. Three groups of lines divides a plane into $D$ regions. Every pair of lines in the same group are parallel. Let $x, y$ and $z$ respectively be the number of lines in groups 1, 2, and 3. If no lines in group 3 go through the intersection of any two lines (in groups 1 and 2, of course), then the least number of lines required in order to have more than 2018 regions is .... P8. It is known a frustum $ABCD.EFGH$ where $ABCD$ and $EFGH$ are squares with both planes being parallel. The length of the sides of $ABCD$ and $EFGH$ respectively are $6a$ and $3a$, and the height of the frustum is $3t$. Points $M$ and $N$ respectively are intersections of the diagonals of $ABCD$ and $EFGH$ and the line $MN$ is perpendicular to the plane $EFGH$. Construct the pyramids $M.EFGH$ and $N.ABCD$ and calculate the volume of the 3D figure which is the intersection of pyramids $N.ABCD$ and $M.EFGH$. P9. Look at the arrangement of natural numbers in the following table. The position of the numbers is determined by their row and column numbers, and its diagonal (which, the sequence of numbers is read from the bottom left to the top right). As an example, the number $19$ is on the 3rd row, 4th column, and on the 6th diagonal. Meanwhile the position of the number $26$ is on the 3rd row, 5th column, and 7th diagonal. (Image should be placed here, look at attachment.) a) Determine the position of the number $2018$ based on its row, column, and diagonal. b) Determine the average of the sequence of numbers whose position is on the "main diagonal" (quotation marks not there in the first place), which is the sequence of numbers read from the top left to the bottom right: 1, 5, 13, 25, ..., which the last term is the largest number that is less than or equal to $2018$. P10. It is known that $A$ is the set of 3-digit integers not containing the digit $0$. Define a [i]gadang[/i] number to be the element of $A$ whose digits are all distinct and the digits contained in such number are not prime, and (a [i]gadang[/i] number leaves a remainder of 5 when divided by 7. If we pick an element of $A$ at random, what is the probability that the number we picked is a [i]gadang[/i] number?

1982 IMO Longlists, 27

Let $O$ be a point of three-dimensional space and let $l_1, l_2, l_3$ be mutually perpendicular straight lines passing through $O$. Let $S$ denote the sphere with center $O$ and radius $R$, and for every point $M$ of $S$, let $S_M$ denote the sphere with center $M$ and radius $R$. We denote by $P_1, P_2, P_3$ the intersection of $S_M$ with the straight lines $l_1, l_2, l_3$, respectively, where we put $P_i \neq O$ if $l_i$ meets $S_M$ at two distinct points and $P_i = O$ otherwise ($i = 1, 2, 3$). What is the set of centers of gravity of the (possibly degenerate) triangles $P_1P_2P_3$ as $M$ runs through the points of $S$?

2008 USAPhO, 1

A charged particle with charge $q$ and mass $m$ is given an initial kinetic energy $K_0$ at the middle of a uniformly charged spherical region of total charge $Q$ and radius $R$. $q$ and $Q$ have opposite signs. The spherically charged region is not free to move. Throughout this problem consider electrostatic forces only. [asy] pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); size(100); filldraw(circle((0,0),1),gray(.8)); draw((0,0)--(0.5,sqrt(3)/2),EndArrow); label("$R$",(0.25,sqrt(3)/4),SE); [/asy] (a) Find the value of $K_0$ such that the particle will just reach the boundary of the spherically charged region. (b) How much time does it take for the particle to reach the boundary of the region if it starts with the kinetic energy $K_0$ found in part (a)?

2015 CCA Math Bonanza, I13

Let $ABCD$ be a tetrahedron such that $AD \perp BD$, $BD \perp CD$, $CD \perp AD$ and $AD=10$, $BD=15$, $CD=20$. Let $E$ and $F$ be points such that $E$ lies on $BC$, $DE \perp BC$, and $ADEF$ is a rectangle. If $S$ is the solid consisting of all points inside $ABCD$ but outside $FBCD$, compute the volume of $S$. [i]2015 CCA Math Bonanza Individual Round #13[/i]

1998 Irish Math Olympiad, 3

Show that no integer of the form $ xyxy$ in base $ 10$ can be a perfect cube. Find the smallest base $ b>1$ for which there is a perfect cube of the form $ xyxy$ in base $ b$.

2006 Tournament of Towns, 4

Is it possible to split a prism into disjoint set of pyramids so that each pyramid has its base on one base of the prism, while its vertex on another base of the prism ? (6)

2012 Today's Calculation Of Integral, 778

In the $xyz$ space with the origin $O$, Let $K_1$ be the surface and inner part of the sphere centered on the point $(1,\ 0,\ 0)$ with radius 2 and let $K_2$ be the surface and inner part of the sphere centered on the point $(-1,\ 0,\ 0)$ with radius 2. For three points $P,\ Q,\ R$ in the space, consider points $X,\ Y$ defined by \[\overrightarrow{OX}=\overrightarrow{OP}+\overrightarrow{OQ},\ \overrightarrow{OY}=\frac 13(\overrightarrow{OP}+\overrightarrow{OQ}+\overrightarrow{OR}).\] (1) When $P,\ Q$ move every cranny in $K_1,\ K_2$ respectively, find the volume of the solid generated by the whole points of the point $X$. (2) Find the volume of the solid generated by the whole points of the point $R$ for which for any $P$ belonging to $K_1$ and any $Q$ belonging to $K_2$, $Y$ belongs to $K_1$. (3) Find the volume of the solid generated by the whole points of the point $R$ for which for any $P$ belonging to $K_1$ and any $Q$ belonging to $K_2$, $Y$ belongs to $K_1\cup K_2$.

1970 Yugoslav Team Selection Test, Problem 3

If all edges of a non-planar quadrilateral tangent the faces of a sphere, prove that all of the points of tangency belong to a plane.

Estonia Open Senior - geometry, 2003.1.2

Four rays spread out from point $O$ in a $3$-dimensional space in a way that the angle between every two rays is $a$. Find $\cos a$.

2004 Belarusian National Olympiad, 7

A cube $ABCDA_1B_1C_1D_1$ is given. Find the locus of points $E$ on the face $A_1B_1C_1D_1$ for which there exists a line intersecting the lines $AB$, $A_1D_1$, $B_1D$, and $EC$.

2023 BMT, 7

A tetrahedron has three edges of length $2$ and three edges of length $4$, and one of its faces is an equilateral triangle. Compute the radius of the sphere that is tangent to every edge of this tetrahedron.

2007 Romania Team Selection Test, 4

Let $S$ be the set of $n$-uples $\left( x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $x_{i}\in \{ 0, 1 \}$ for all $i \in \overline{1,n}$, where $n \geq 3$. Let $M(n)$ be the smallest integer with the property that any subset of $S$ with at least $M(n)$ elements contains at least three $n$-uples \[\left( x_{1}, \ldots, x_{n}\right), \, \left( y_{1}, \ldots, y_{n}\right), \, \left( z_{1}, \ldots, z_{n}\right) \] such that \[\sum_{i=1}^{n}\left( x_{i}-y_{i}\right)^{2}= \sum_{i=1}^{n}\left( y_{i}-z_{i}\right)^{2}= \sum_{i=1}^{n}\left( z_{i}-x_{i}\right)^{2}. \] (a) Prove that $M(n) \leq \left\lfloor \frac{2^{n+1}}{n}\right\rfloor+1$. (b) Compute $M(3)$ and $M(4)$.

I Soros Olympiad 1994-95 (Rus + Ukr), 11.10

Given a tetrahedron $A_1A_2A_3A_4$ (not necessarily regulart). We shall call a point $N$ in space [i]Serve point[/i], if it's six projection points on the six edges of the tetrahedron lie on one plane. This plane we denote it by $a (N)$ and call the [i]Serve plane[/i] of the point $N$. By $B_{ij}$ denote, respectively, the midpoint of the edges $A_1A_j$, $1\le i <j \le 4$. For each point $M$, denote by $M_{ij}$ the points symmetric to $M$ with respect to $B_{ij},$ $1\le i <j \le 4$. Prove that if all points $M_{ij}$ are Serve points, then the point $M$ belongs to all Serve planes $a (M_{ij})$, $1\le i <j \le 4$.

2002 German National Olympiad, 2

Minimal distance of a finite set of different points in space is length of the shortest segment, whose both ends belong to this set and segment has length greater than $0$. a) Prove there exist set of $8$ points on sphere with radius $R$, whose minimal distance is greater than $1,15R$. b) Does there exist set of $8$ points on sphere with radius $R$, whose minimal distance is greater than $1,2R$?

MIPT Undergraduate Contest 2019, 1.1 & 2.1

In $\mathbb{R}^3$, let there be a cube $Q$ and a sequence of other cubes, all of which are homothetic to $Q$ with coefficients of homothety that are each smaller than $1$. Prove that if this sequence of homothetic cubes completely fills $Q$, the sum of their coefficients of homothety is not less than $4$.